Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1976 Jan 2;61(1):253-8.
doi: 10.1111/j.1432-1033.1976.tb10018.x.

Hydrogen-isotope exchange of oxidized and reduced cytochrome c. A comparison of mass spectrometry and infrared methods

Free article
Comparative Study

Hydrogen-isotope exchange of oxidized and reduced cytochrome c. A comparison of mass spectrometry and infrared methods

E Nabedryk-Viala et al. Eur J Biochem. .
Free article

Abstract

Hydrogen-deuterium exchange in 2H20 solutions of the two redox states of horse heart cytochrome c was investigated at 20 degrees C, pH 7, by mass spectrometry and infrared spectroscopy. Mass spectrometry indicates that ferricytochrome has 20 hydrogens unexchanged after 24 h, 28 hydrogens exchanging between 10 min and 24 h, and 156 hydrogens exchanging within 10 min; comparative values for ferrocytochrome are 45, 19 and 140. The displacement of the exchange curves obtained by infrared corresponds to 8 to 9 peptide hydrogens. These combined methods show many non-peptide hydrogens exchanging rapidly (87 and 79 for ferricytochrome c and ferrocytochrome c respectively), whereas others, probably buried inside the molecule and involved in hydrogen bonds, are not exchanged, even after 24 h (14 and 30 hydrogens respectively, which is relatively large for a small protein). Infrared results are given in terms of changes of standard free energy for the transconformational reaction which exposes the peptide hydrogens to solvent: in ferricytochrome c and ferrycoytochrome c, 30% and 40% respectively of the peptide hydrogens are protected by conformational transitions stabilized by more than 5 kcal/mol (21 kJ/mol), which implies a large increase in rigidity for the reduced form.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources