Optimal neural rate coding leads to bimodal firing rate distributions
- PMID: 12790186
Optimal neural rate coding leads to bimodal firing rate distributions
Abstract
Many experimental studies concerning the neuronal code are based on graded responses of neurons, given by the emitted number of spikes measured in a certain time window. Correspondingly, a large body of neural network theory deals with analogue neuron models and discusses their potential use for computation or function approximation. All physical signals, however, are of limited precision, and neuronal firing rates in cortex are relatively low. Here, we investigate the relevance of analogue signal processing with spikes in terms of optimal stimulus reconstruction and information theory. In particular, we derive optimal tuning functions taking the biological constraint of limited firing rates into account. It turns out that depending on the available decoding time T, optimal encoding undergoes a phase transition from discrete binary coding for small T towards analogue or quasi-analogue encoding for large T. The corresponding firing rate distributions are bimodal for all relevant T, in particular in the case of population coding.
Similar articles
-
Optimal short-term population coding: when Fisher information fails.Neural Comput. 2002 Oct;14(10):2317-51. doi: 10.1162/08997660260293247. Neural Comput. 2002. PMID: 12396565
-
Implications of neuronal diversity on population coding.Neural Comput. 2006 Aug;18(8):1951-86. doi: 10.1162/neco.2006.18.8.1951. Neural Comput. 2006. PMID: 16771659
-
Spatiotemporal spike encoding of a continuous external signal.Neural Comput. 2002 Jul;14(7):1599-628. doi: 10.1162/08997660260028638. Neural Comput. 2002. PMID: 12079548
-
Statistical models for neural encoding, decoding, and optimal stimulus design.Prog Brain Res. 2007;165:493-507. doi: 10.1016/S0079-6123(06)65031-0. Prog Brain Res. 2007. PMID: 17925266 Review.
-
The neuronal encoding of information in the brain.Prog Neurobiol. 2011 Nov;95(3):448-90. doi: 10.1016/j.pneurobio.2011.08.002. Epub 2011 Sep 2. Prog Neurobiol. 2011. PMID: 21907758 Review.
Cited by
-
Optimum neural tuning curves for information efficiency with rate coding and finite-time window.Front Comput Neurosci. 2015 Jun 3;9:67. doi: 10.3389/fncom.2015.00067. eCollection 2015. Front Comput Neurosci. 2015. PMID: 26089793 Free PMC article.
-
Adaptivity of tuning functions in a generic recurrent network model of a cortical hypercolumn.J Neurosci. 2005 Mar 30;25(13):3323-32. doi: 10.1523/JNEUROSCI.4493-04.2005. J Neurosci. 2005. PMID: 15800187 Free PMC article.
-
Adaptive Tuning Curve Widths Improve Sample Efficient Learning.Front Comput Neurosci. 2020 Feb 18;14:12. doi: 10.3389/fncom.2020.00012. eCollection 2020. Front Comput Neurosci. 2020. PMID: 32132915 Free PMC article.
-
Correlations reveal the hierarchical organization of biological networks with latent variables.Commun Biol. 2024 Jun 3;7(1):678. doi: 10.1038/s42003-024-06342-y. Commun Biol. 2024. PMID: 38831002 Free PMC article.
-
Benefits of pathway splitting in sensory coding.J Neurosci. 2014 Sep 3;34(36):12127-44. doi: 10.1523/JNEUROSCI.1032-14.2014. J Neurosci. 2014. PMID: 25186757 Free PMC article.