Effects of mitochondrial inhibitors and uncouplers on hypoxic vasoconstriction in rabbit lungs
- PMID: 12791676
- DOI: 10.1165/rcmb.2002-0217OC
Effects of mitochondrial inhibitors and uncouplers on hypoxic vasoconstriction in rabbit lungs
Abstract
Hypoxic pulmonary vasoconstriction (HPV) matches lung perfusion to ventilation for optimizing pulmonary gas exchange; however, the underlying mechanism has not yet been fully elucidated. Lung nitric oxide (NO) generation appears to be involved in this process. Recently, mitochondria have been proposed as oxygen sensors, with HPV signaling via a hypoxia-induced increase in the generation of reactive oxygen species derived from mitochondrial complex III and escaping through an anion channel into the cytoplasm. In addition, complex II has been suggested to be specifically involved in hypoxia-dependent generation of reactive oxygen species in the lung. We investigated the effects of several mitochondrial inhibitors and uncouplers on the strength of HPV, and asked for their capacity to mimic HPV during normoxia in isolated buffer-perfused rabbit lungs. Specificity of the agents for HPV was tested by comparison of their effects on non-hypoxia-induced vasoconstriction, elicited by the thromboxane mimetic U46619. Interference with NO metabolism was determined by performing parallel studies with blocked lung NO generation and by measurement of exhaled NO. Rotenone, 3-nitroproprionic acid, and myxothiazol dose-dependently inhibited HPV without being mimics of HPV during normoxia. The inhibitory effect of these agents was only partly specific for HPV by comparison with U46619-induced vasoconstriction. During pre-blocked lung NO synthesis, the selectivity for HPV inhibition was increased for rotenone, but largely lost for myxothiazol. 2-tenoyltrifluoroacetone resulted in an unspecific inhibition of HPV as compared with U46619-induced vasoconstriction. 1-methyl-4-phenylpyridinium iodide and 2-heptyl-4-hydroxyquinoline-N-oxide specifically suppressed HPV and increased normoxic vascular tone. Antimycin A suppressed HPV, an effect being specific in lungs with intact NO synthesis and only partly specific while blocking NO. However, this agent did not mimic HPV during normoxia, as may be expected for interference with the mitochondrial electron transport downstream in complex III. The uncouplers 2,4-dinitrophenol (DNP, 10-200 microM) and carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP, 1-3 microM) induced sustained vasoconstriction during normoxia, with enhancement of HPV by DNP at low and suppression of HPV for both agents at high concentrations. The anion channel blocker 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid inhibited HPV and U46619-induced vasoconstriction with identical dose-response curves. These findings suggest that mitochondria are in some manner involved in the regulation of HPV in intact rabbit lungs. The hypothesis that enhanced superoxide leak at complex III of mitochondria represents the underlying mechanism of acute HPV is supported by the rotenone and 2-heptyl-4-hydroxyquinoline-N-oxide data, but partly contradicted by the findings with 1-methyl-4-phenylpyridinium iodide, antimycin A, DNP, and FCCP. Further studies are mandatory to clarify the link between mitochondrial respiratory chain and hypoxic pulmonary vasoconstriction.
Similar articles
-
Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing.Circ Res. 2001 Jun 22;88(12):1259-66. doi: 10.1161/hh1201.091960. Circ Res. 2001. PMID: 11420302
-
Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: identity of the hypoxic sensor.J Physiol. 2001 Oct 1;536(Pt 1):211-24. doi: 10.1111/j.1469-7793.2001.00211.x. J Physiol. 2001. PMID: 11579170 Free PMC article.
-
Nitric oxide (NO)-dependent but not NO-independent guanylate cyclase activation attenuates hypoxic vasoconstriction in rabbit lungs.Am J Respir Cell Mol Biol. 2000 Aug;23(2):222-7. doi: 10.1165/ajrcmb.23.2.3935. Am J Respir Cell Mol Biol. 2000. PMID: 10919989
-
Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells.J Mol Cell Cardiol. 2004 Dec;37(6):1119-36. doi: 10.1016/j.yjmcc.2004.09.007. J Mol Cell Cardiol. 2004. PMID: 15572043 Review.
-
Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction.Eur Respir J. 2016 Jan;47(1):288-303. doi: 10.1183/13993003.00945-2015. Epub 2015 Oct 22. Eur Respir J. 2016. PMID: 26493804 Review.
Cited by
-
Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation.Am J Respir Crit Care Med. 2013 Feb 15;187(4):424-32. doi: 10.1164/rccm.201207-1294OC. Epub 2013 Jan 17. Am J Respir Crit Care Med. 2013. PMID: 23328522 Free PMC article.
-
Primary role of mitochondrial Rieske iron-sulfur protein in hypoxic ROS production in pulmonary artery myocytes.Free Radic Biol Med. 2011 Apr 15;50(8):945-52. doi: 10.1016/j.freeradbiomed.2011.01.010. Epub 2011 Jan 14. Free Radic Biol Med. 2011. PMID: 21238580 Free PMC article.
-
Acute oxygen sensing by vascular smooth muscle cells.Front Physiol. 2023 Mar 3;14:1142354. doi: 10.3389/fphys.2023.1142354. eCollection 2023. Front Physiol. 2023. PMID: 36935756 Free PMC article. Review.
-
ROS-dependent signaling mechanisms for hypoxic Ca(2+) responses in pulmonary artery myocytes.Antioxid Redox Signal. 2010 Mar 1;12(5):611-23. doi: 10.1089/ars.2009.2877. Antioxid Redox Signal. 2010. PMID: 19764882 Free PMC article. Review.
-
Acetazolamide prevents hypoxia-induced reactive oxygen species generation and calcium release in pulmonary arterial smooth muscle.Pulm Circ. 2021 Oct 5;11(4):20458940211049948. doi: 10.1177/20458940211049948. eCollection 2021 Oct-Dec. Pulm Circ. 2021. PMID: 34646499 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources