Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul 11;93(1):32-9.
doi: 10.1161/01.RES.0000080317.92718.99. Epub 2003 Jun 5.

Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization

Affiliations
Free article

Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization

Jia-Qiang He et al. Circ Res. .
Free article

Abstract

Human embryonic stem (hES) cells can differentiate in vitro, forming embryoid bodies (EBs) composed of derivatives of all three embryonic germ layers. Spontaneously contracting outgrowths from these EBs contain cardiomyocytes (CMs); however, the types of human CMs and their functional properties are unknown. This study characterizes the contractions and action potentials (APs) from beating EB outgrowths cultured for 40 to 95 days. Spontaneous and electrical field-stimulated contractions were measured with video edge-detection microscopy. beta-Adrenergic stimulation with 1.0 micromol/L isoproterenol resulted in a significant increase in contraction magnitude. Intracellular electrical recordings using sharp KCl microelectrodes in beating EB outgrowths revealed three distinct classes of APs: nodal-like, embryonic atrial-like, and embryonic ventricular-like. The APs were described as embryonic based on the relatively depolarized resting membrane potential and slow AP upstroke. Repeated impalements of an individual beating outgrowth revealed a reproducible AP morphology recorded from different cells, suggesting that each outgrowth is composed of a predominant cell type. Complex functional properties typical of cardiac muscle were observed in the hES cell-derived CMs including rate adaptation of AP duration and provoked early and delayed afterdepolarizations. Repolarization of the AP showed a significant role for IKr based on E-4031 induced prolongation of AP duration as anticipated for human CMs. In conclusion, hES cells can differentiate into multiple types of CMs displaying functional properties characteristic of embryonic human cardiac muscle. Thus, hES provide a renewable source of distinct types of human cardiac myocytes for basic research, pharmacological testing, and potentially therapeutic applications.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

LinkOut - more resources