Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Oct;15(3-4):339-48.
doi: 10.1016/0169-328x(92)90127-w.

Expression of a glutamate-activated chloride current in Xenopus oocytes injected with Caenorhabditis elegans RNA: evidence for modulation by avermectin

Affiliations

Expression of a glutamate-activated chloride current in Xenopus oocytes injected with Caenorhabditis elegans RNA: evidence for modulation by avermectin

J P Arena et al. Brain Res Mol Brain Res. 1992 Oct.

Abstract

Membrane currents were recorded from Xenopus laevis oocytes injected with C. elegans poly(A)+ RNA. In such oocytes glutamate activated an inward membrane current that desensitized in the continued presence of glutamate. Glutamate-receptor agonists quisqualate, kainate, and N-methyl-D-aspartate were inactive. The reversal potential of the glutamate-sensitive current was -22 mV, and exhibited a strong dependence on external chloride with a 48 mV change for a 10-fold change in chloride. The chloride channel blockers flufenamate and picrotoxin inhibited the glutamate-sensitive current. Ibotenate, a structural analog of glutamate, also activated a picrotoxin-sensitive chloride current. Ibotenate was inactive when current was partially desensitized with glutamate, and the responses to low concentrations of glutamate and ibotenate were additive. The anthelmintic/insecticide compound avermectin directly activated the glutamate-sensitive current. In addition, avermectin increased the response to submaximal concentrations of glutamate, shifted the glutamate concentration-response curve to lower concentrations, and slowed the desensitization of glutamate-sensitive current. We propose that the glutamate-sensitive chloride current and the avermectin-sensitive chloride current are mediated via the same channel.

PubMed Disclaimer

MeSH terms

LinkOut - more resources