Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Jun;7(3):R24-34.
doi: 10.1186/cc2171. Epub 2003 Mar 17.

Severe sepsis: variation in resource and therapeutic modality use among academic centers

Affiliations
Comparative Study

Severe sepsis: variation in resource and therapeutic modality use among academic centers

D Tony Yu et al. Crit Care. 2003 Jun.

Abstract

Background: Treatment of severe sepsis is expensive, often encompassing a number of discretionary modalities. The objective of the present study was to assess intercenter variation in resource and therapeutic modality use in patients with severe sepsis.

Methods: We conducted a prospective cohort study of 1028 adult admissions with severe sepsis from a stratified random sample of patients admitted to eight academic tertiary care centers. The main outcome measures were length of stay (LOS; total LOS and LOS after onset of severe sepsis) and total hospital charges.

Results: The adjusted mean total hospital charges varied from 69 429 dollars to US237 898 dollars across centers, whereas the adjusted LOS after onset varied from 15.9 days to 24.2 days per admission. Treatments used frequently after the first onset of sepsis among patients with severe sepsis were pulmonary artery catheters (19.4%), ventilator support (21.8%), pressor support (45.8%) and albumin infusion (14.4%). Pulmonary artery catheter use, ventilator support and albumin infusion had moderate variation profiles, varying 3.2-fold to 4.9-fold, whereas the rate of pressor support varied only 1.92-fold across centers. Even after adjusting for age, sex, Charlson comorbidity score, discharge diagnosis-relative group weight, organ dysfunction and service at onset, the odds for using these therapeutic modalities still varied significantly across centers. Failure to start antibiotics within 24 hours was strongly correlated with a higher probability of 28-day mortality (r2 = 0.72).

Conclusion: These data demonstrate moderate but significant variation in resource use and use of technologies in treatment of severe sepsis among academic centers. Delay in antibiotic therapy was associated with worse outcome at the center level.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Variation in odds ratios (ORs) for therapeutic modalities. C1 was the reference center. ORs were calculated after adjusting for age, sex, Charlson comorbidity score and discharge diagnosis-related group weight, organ dysfunction, and service at onset of sepsis. Albumin, on albumin within 24 hours after onset; Antibiotic, antibiotic given within 24 hours after onset; CI, confidence interval; PA, pulmonary artery; Pressor, pressor support; Ventilator, ventilator support.
Figure 2
Figure 2
Variation in odds ratios (ORs) for outcomes. C1 was the reference center. ORs were calculated after adjusting for age, sex, Charlson comorbidity score, and discharge diagnosis-related group weight, organ dysfunction, and service at onset of sepsis. ARDS, acute respiratory distress syndrome; CI, confidence interval; DIC, disseminated intravascular coagulation.
Figure 3
Figure 3
Relationship between mortality rate and antibiotic use. This plot displays the mortality rate versus whether an antibiotic was given within 24 hours after sepsis onset in the eight centers. The results were significant for (a) all patients (n = 1028) and (b) for the subgroup (n = 924) after excluding those with a 'do not resuscitate' order (n = 104).

Comment in

Similar articles

Cited by

References

    1. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–1310. - PubMed
    1. Niederman MS, Fein AM. Sepsis syndrome, the adult respiratory distress syndrome, and nosocomial pneumonia. A common clinical sequence. Clin Chest Med. 1990;11:633–656. - PubMed
    1. Rangel-Frausto MS, Pittet D, Costigan M, Hwang T, Davis CS, Wenzel RP. The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study. JAMA. 1995;273:117–123. - PubMed
    1. Wenzel RP. Anti-endotoxin monoclonal antibodies: a second look. N Engl J Med. 1992;326:1151–1153. - PubMed
    1. Pittet D, Thievent B, Wenzel RP, Li N, Gurman G, Suter PM. Importance of pre-existing co-morbidities for prognosis of septicemia in critically ill patients. Intensive Care Med. 1993;19:265–272. - PubMed

Publication types

MeSH terms