Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jun;31(6):1802-7.
doi: 10.1097/01.CCM.0000069728.49939.E4.

Role of ubiquitin-proteasome pathway in skeletal muscle wasting in rats with endotoxemia

Affiliations

Role of ubiquitin-proteasome pathway in skeletal muscle wasting in rats with endotoxemia

Jiake Chai et al. Crit Care Med. 2003 Jun.

Abstract

Objective: To investigate the mechanism of muscle protein breakdown under endotoxemia condition.

Design: Randomized, controlled, animal experiment in a hospital institute.

Setting: Experimental laboratory.

Intervention: Either saline or endotoxin (Escherichia coli O(55)B(5), 10 mg/kg) were administered into the peritoneal cavity in rats.

Measurements and main results: The rate of total protein breakdown was increased by 29% and 61% in extensor digitorum longus muscle at 2 hrs and 6 hrs, whereas the myofibrillar proteolytic rate was increased by 155%, 222%, and 40% at 2 hrs, 6 hrs, and 12 hrs, respectively, in the endotoxin treatment group compared with that of the pair-fed normal control group. Meanwhile, compared with the normal control group, the level of 2.4-kilobase (kb) messenger RNA (mRNA) for ubiquitin in extensor digitorum longus muscle in rats was increased by 153% and 470% at 2 hrs and 6 hrs. There were 87% and 117% increases in 1.2-kb mRNA for E2-14K, and 89% and 168% increase in RC2 mRNA expression in extensor digitorum longus muscle in endotoxemic rats than normal control rats at 2 hrs and 6 hrs after injection of endotoxin peritoneally. The tumor necrosis factor-alpha and interleukin-6 concentrations in rat plasma progressively increased after endotoxin treatment, but tumor necrosis factor-alpha peaked at the 2-hr time point, whereas interleukin-6 peaked at 12 hrs. Endotoxin administration resulted in a marked increase in endotoxin level at 2 hrs and 6 hrs. No significant change was observed in soleus muscle after endotoxin injection. A significantly positive correlation was found between the net release of 3-methylhistidine and respective values of endotoxin, intensity of mRNA expression of 2.-kb ubiquitin, 1.2-kb E2-14K, and subunit RC2 in extensor digitorum longus muscle (r =.9882, .9731, .9653, .9814, p <.05). However, no significant correlation was seen between tumor necrosis factor-alpha or interleukin-6 and respective values of 3-methylhistidine, mRNA expression of 2.4-kb ubiquitin, 1.2-kb E2-14K, and subunit RC2 (r =.3580, .4521, .5277, .4931, p >.05; r =.3950, .1767, .2136, .2519, p >.05, respectively.) in soleus muscle.

Conclusions: Endotoxemia can induce enhancement of skeletal muscle protein breakdown, mainly involving myofibrillar protein and white, fast-twitch extensor digitorum longus muscle. Ubiquitin-proteasome proteolytic pathway plays an important and major role in skeletal muscle proteolysis. Endotoxin, tumor necrosis factor-alpha, and interleukin-6 can directly or indirectly regulate muscle protein breakdown.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources