A molecular mechanism of enantiorecognition of tertiary alcohols by carboxylesterases
- PMID: 12794858
- DOI: 10.1002/cbic.200200518
A molecular mechanism of enantiorecognition of tertiary alcohols by carboxylesterases
Abstract
Carboxylesterases containing the sequence motif GGGX catalyze the hydrolysis of esters of chiral tertiary alcohols, albeit with only low to moderate enantioselectivity, for three model substrates (linalyl acetate, methyl-1-pentin-1-yl acetate, 2-phenyl-3-butin-2-yl acetate). In order to understand the molecular mechanism of enantiorecognition and to improve enantioselectivity for this interesting substrate class, the interaction of both enantiomers with the substrate binding sites of acetylcholinesterases and p-nitrobenzyl esterase from Bacillus subtilis was modeled and correlated to experimental enantioselectivity. For all substrate-enzyme pairs, enantiopreference and ranking by enantioselectivity could be predicted by the model. In p-nitrobenzyl esterase, one of the key residues in determining enantioselectivity was G105: exchange of this amino acid for an alanine residue led to a sixfold increase of enantioselectivity (E = 19) towards 2-phenyl-3-butin-2-yl acetate. However, the effect of this mutation is specific: the same mutant had the opposite enantiopreference towards the substrate linalyl acetate. Thus, depending on the substrate structure, the same mutant has either increased enantioselectivity or opposite enantiopreference compared to the wild-type enzyme.
Similar articles
-
Highly enantioselective kinetic resolution of two tertiary alcohols using mutants of an esterase from Bacillus subtilis.Protein Eng Des Sel. 2007 Mar;20(3):125-31. doi: 10.1093/protein/gzm003. Epub 2007 Feb 19. Protein Eng Des Sel. 2007. PMID: 17309898
-
Complete inversion of enantioselectivity towards acetylated tertiary alcohols by a double mutant of a Bacillus subtilis esterase.Angew Chem Int Ed Engl. 2008;47(8):1508-11. doi: 10.1002/anie.200704606. Angew Chem Int Ed Engl. 2008. PMID: 18203225 No abstract available.
-
Loop grafting of Bacillus subtilis lipase A: inversion of enantioselectivity.Chem Biol. 2008 Aug 25;15(8):782-9. doi: 10.1016/j.chembiol.2008.06.009. Chem Biol. 2008. PMID: 18721749
-
GDSL family of serine esterases/lipases.Prog Lipid Res. 2004 Nov;43(6):534-52. doi: 10.1016/j.plipres.2004.09.002. Prog Lipid Res. 2004. PMID: 15522763 Review.
-
Recent advances of structure, function, and engineering of carboxylesterases for the pharmaceutical industry: A minireview.Int J Biol Macromol. 2025 May;307(Pt 3):142206. doi: 10.1016/j.ijbiomac.2025.142206. Epub 2025 Mar 17. Int J Biol Macromol. 2025. PMID: 40107535 Review.
Cited by
-
Lipase improvement: goals and strategies.Comput Struct Biotechnol J. 2012 Oct 15;2:e201209005. doi: 10.5936/csbj.201209005. eCollection 2012. Comput Struct Biotechnol J. 2012. PMID: 24688646 Free PMC article. Review. No abstract available.
-
A de novo peroxidase is also a promiscuous yet stereoselective carbene transferase.Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1419-1428. doi: 10.1073/pnas.1915054117. Epub 2020 Jan 2. Proc Natl Acad Sci U S A. 2020. PMID: 31896585 Free PMC article.
-
Catalysis and Electron Transfer in De Novo Designed Metalloproteins.Chem Rev. 2022 Jul 27;122(14):12046-12109. doi: 10.1021/acs.chemrev.1c01025. Epub 2022 Jun 28. Chem Rev. 2022. PMID: 35763791 Free PMC article. Review.
-
Enzymatic synthesis of enantiopure alcohols: current state and perspectives.RSC Adv. 2019 Jan 15;9(4):2102-2115. doi: 10.1039/c8ra09004a. eCollection 2019 Jan 14. RSC Adv. 2019. PMID: 35516160 Free PMC article. Review.
-
Green Synthesis of the Flavor Esters with a Marine Candida parapsilosis Esterase Expressed in Saccharomyces cerevisiae.Indian J Microbiol. 2020 Jun;60(2):175-181. doi: 10.1007/s12088-020-00856-9. Epub 2020 Jan 9. Indian J Microbiol. 2020. PMID: 32255850 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources