Histone-like proteins of the dinoflagellate Crypthecodinium cohnii have homologies to bacterial DNA-binding proteins
- PMID: 12796310
- PMCID: PMC161454
- DOI: 10.1128/EC.2.3.646-650.2003
Histone-like proteins of the dinoflagellate Crypthecodinium cohnii have homologies to bacterial DNA-binding proteins
Abstract
The dinoflagellates have very large genomes encoded in permanently condensed and histoneless chromosomes. Sequence alignment identified significant similarity between the dinoflagellate chromosomal histone-like proteins of Crypthecodinium cohnii (HCCs) and the bacterial DNA-binding and the eukaryotic histone H1 proteins. Phylogenetic analysis also supports the origin of the HCCs from histone-like proteins of bacteria.
Figures


Similar articles
-
Identification and characterization of three differentially expressed genes, encoding S-adenosylhomocysteine hydrolase, methionine aminopeptidase, and a histone-like protein, in the toxic dinoflagellate Alexandrium fundyense.Appl Environ Microbiol. 2000 May;66(5):2105-12. doi: 10.1128/AEM.66.5.2105-2112.2000. Appl Environ Microbiol. 2000. PMID: 10788388 Free PMC article.
-
Molecular cloning and immunolocalization of two variants of the major basic nuclear protein (HCc) from the histone-less eukaryote Crypthecodinium cohnii (Pyrrhophyta).Chromosoma. 1991 Sep;100(8):510-8. doi: 10.1007/BF00352201. Chromosoma. 1991. PMID: 1764969
-
The cytochrome oxidase subunit 1 gene (cox1) from the dinoflagellate, Crypthecodinium cohnii.FEBS Lett. 1997 Aug 18;413(2):333-8. doi: 10.1016/s0014-5793(97)00938-1. FEBS Lett. 1997. PMID: 9280308
-
Chromosomes of Protists: The crucible of evolution.Int Microbiol. 2015 Dec;18(4):209-16. doi: 10.2436/20.1501.01.252. Int Microbiol. 2015. PMID: 27611673 Review.
-
Molecular organization of dinoflagellate ribosomal DNA: evolutionary implications of the deduced 5.8 S rRNA secondary structure.Biosystems. 1985;18(3-4):307-19. doi: 10.1016/0303-2647(85)90031-0. Biosystems. 1985. PMID: 3910136 Review.
Cited by
-
Comparative genomic and transcriptomic characterization of the toxigenic marine dinoflagellate Alexandrium ostenfeldii.PLoS One. 2011;6(12):e28012. doi: 10.1371/journal.pone.0028012. Epub 2011 Dec 2. PLoS One. 2011. PMID: 22164224 Free PMC article.
-
Spliced leader-based metatranscriptomic analyses lead to recognition of hidden genomic features in dinoflagellates.Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20033-8. doi: 10.1073/pnas.1007246107. Epub 2010 Nov 1. Proc Natl Acad Sci U S A. 2010. PMID: 21041634 Free PMC article.
-
Genome-wide distribution of 5-hydroxymethyluracil and chromatin accessibility in the Breviolum minutum genome.Genome Biol. 2024 May 6;25(1):115. doi: 10.1186/s13059-024-03261-3. Genome Biol. 2024. PMID: 38711126 Free PMC article.
-
Direct regulation of topoisomerase activity by a nucleoid-associated protein.Nucleic Acids Res. 2014;42(17):11156-65. doi: 10.1093/nar/gku804. Epub 2014 Sep 8. Nucleic Acids Res. 2014. PMID: 25200077 Free PMC article.
-
Nitrogen and Iron Availability Drive Metabolic Remodeling and Natural Selection of Diverse Phytoplankton during Experimental Upwelling.mSystems. 2022 Oct 26;7(5):e0072922. doi: 10.1128/msystems.00729-22. Epub 2022 Aug 29. mSystems. 2022. PMID: 36036504 Free PMC article.
References
-
- Bendich, A. J., and K. Drlica. 2000. Prokaryotic and eukaryotic chromosomes: what's the difference? Bioessays 22:481-486. - PubMed
-
- Bodansky, S., L. B. Mintz, and D. S. Holmes. 1979. The mesokaryote Gyrodinium cohnii lacks nucleosomes. Biochem. Biophys. Res. Commun. 88:1329-1336. - PubMed
-
- Bouligand, Y., and V. Norris. 2001. Chromosome separation and segregation in dinoflagellates and bacteria may depend on liquid crystalline states. Biochimie 83:187-192. - PubMed
-
- Cachon, J., H. Sato, M. Cachon, and Y. Sato. 1989. Analysis by polarizing microscopy of chromosomal structure among dinoflagellates and its phylogenetic involvement. Biol. Cell 65:51-60.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources