Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003:276:199-214.
doi: 10.1007/978-3-662-06508-2_9.

Dendritic cell vaccination and viral infection--animal models

Affiliations
Review

Dendritic cell vaccination and viral infection--animal models

B Ludewig. Curr Top Microbiol Immunol. 2003.

Abstract

Dendritic cells (DCs) play a pivotal role in the initiation and maintenance of immune responses against viruses and other microbial pathogens. Adoptively transferred, in vitro manipulated DCs presenting antigen derived from different viruses have been shown to elicit cytotoxic T cell (CTL) and T helper (Th) cell responses and to induce protective antiviral immunity. Furthermore, DC-based adoptive immunotherapies have the potential to specifically (re)activate antiviral immunity in chronic viral diseases such as HIV or hepatitis virus infections. Cellular dendritic cell vaccines, however, are not suitable for large-scale prophylactic immunization. Strategies for vaccine development should therefore aim at the specific delivery of microbial antigens to DCs in situ. Furthermore, appropriate mobilization and activation of DCs by the vaccine is important for the generation of optimal antimicrobial immune responses. Here, we discuss recent data on induction of antiviral immunity with various DC-vaccination approaches and outline future directions for the development of specific antigen targeting to DCs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources