Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Jun;31(6):686-91.
doi: 10.1114/1.1569268.

The stress-strain behavior of coronary stent struts is size dependent

Affiliations
Comparative Study

The stress-strain behavior of coronary stent struts is size dependent

B P Murphy et al. Ann Biomed Eng. 2003 Jun.

Abstract

Coronary stents are used to re-establish the vascular lumen and flow conditions within the coronary arteries; the typical thickness of a stent strut is 100 microm, and average grain sizes of approximately 25 microm exist in stainless steel stents. The purpose of this study is to investigate the effect of strut size on the stress strain behavior of 316 L stainless steel. Other materials have shown a size dependence at the micron size scale; however, at present there are no studies that show a material property size dependence in coronary stents. Electropolished stainless steel stent struts within the size range of 60-500 microm were tensile tested. The results showed that within the size range of coronary stent struts a size dependent stress-strain relationship is required to describe the material. Finite element models of the final phase of fracture, i.e., void growth models, explained partially the reason for this size effect. This study demonstrated that a size based stress-strain relationship must be used to describe the tensile behavior material of 316 L stainless steel at the size scale of coronary stent struts.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources