Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Jun 5;38(5):715-30.
doi: 10.1016/s0896-6273(03)00330-1.

Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: molecular genetic dissection of Non-REM and REM sleep regulatory processes

Affiliations
Free article
Comparative Study

Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: molecular genetic dissection of Non-REM and REM sleep regulatory processes

Jon T Willie et al. Neuron. .
Free article

Abstract

Narcolepsy-cataplexy, a neurological disorder associated with the absence of hypothalamic orexin (hypocretin) neuropeptides, consists of two underlying problems: inability to maintain wakefulness and intrusion of rapid eye movement (REM) sleep into wakefulness. Here we document, using behavioral, electrophysiological, and pharmacological criteria, two distinct classes of behavioral arrests exhibited by mice deficient in orexin-mediated signaling. Both OX2R(-/-) and orexin(-/-) mice are similarly affected with behaviorally abnormal attacks of non-REM sleep ("sleep attacks") and show similar degrees of disrupted wakefulness. In contrast, OX2R(-/-) mice are only mildly affected with cataplexy-like attacks of REM sleep, whereas orexin(-/-) mice are severely affected. Absence of OX2Rs eliminates orexin-evoked excitation of histaminergic neurons in the hypothalamus, which gate non-REM sleep onset. While normal regulation of wake/non-REM sleep transitions depends critically upon OX2R activation, the profound dysregulation of REM sleep control unique to the narcolepsy-cataplexy syndrome emerges from loss of signaling through both OX2R-dependent and OX2R-independent pathways.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms