Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Sep;146(1):67-77.
doi: 10.1111/j.1748-1716.1992.tb09394.x.

Block of potassium outward currents in the crayfish stretch receptor neurons by 4-aminopyridine, tetraethylammonium chloride and some other chemical substances

Affiliations

Block of potassium outward currents in the crayfish stretch receptor neurons by 4-aminopyridine, tetraethylammonium chloride and some other chemical substances

N Purali et al. Acta Physiol Scand. 1992 Sep.

Abstract

The effects of 4-aminopyridine (4-AP) and tetraethylammonium (TEA) on the outward potassium currents in the rapidly and slowly adapting stretch receptor neurons (SRNs) of the crayfish (Pacifastacus leniusculus) were studied using a two micro-electrode voltage-clamp technique. The leakage current was not affected by either 4-AP or TEA. External 4-AP blocked the peak outward current in a dose-dependent manner (1:1 stoichiometry) with an apparent dissociation constant (Kd) of 2.3 +/- 0.2 mM (mean +/- SEM) in the slowly and 1.4 +/- 0.2 mM in the rapidly adapting SRN, the block being voltage dependent. External application of TEA resulted in a block of the steady state current enhancing the transient characteristics of the current response. The block appeared to deviate from a 1:1 stoichiometry and the apparent Kd for TEA was 9.6 +/- 3.4 mM with a cooperativity factor n = 0.43 +/- 0.03 in the slowly adapting SRN and 34.5 +/- 9.2 mM and 0.37 +/- 0.03 respectively in the rapidly adapting SRN. Low Ca2+, apamin and charybdotoxin, which are known to block Ca(2+)-dependent K-currents, had no effects on the outward current as was also the case with catechol. It is concluded that the different effects of TEA and 4-AP on the outward current in the two types of SRNs can be explained by the presence of at least two, probably heteromultimeric, channel populations having similar sensitivity to 4-AP but different sensitivity to TEA. One channel has a high affinity (Kd = 0.8-1.6 mM) for TEA and the other a low affinity (Kd = 173-213 mM) for TEA. The low-affinity channel seems to dominate in the slowly adapting SRN while both channels are equally common in the rapidly adapting SRN. Further, the present results do not support the existence of a macroscopic Ca(2+)-dependent K+ current in the SRNs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources