Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Aug 20;83(4):400-15.
doi: 10.1002/bit.10682.

Profiling of dynamic changes in hypermetabolic livers

Affiliations
Comparative Study

Profiling of dynamic changes in hypermetabolic livers

Kyongbum Lee et al. Biotechnol Bioeng. .

Abstract

The liver plays an important role in the overall negative nitrogen balance leading to muscle wasting commonly observed in patients following many conditions, including severe injury, cancer, and diabetes. In order to study changes in liver metabolism during the establishment of such catabolic states, we used a rat skin burn injury model that induces hypermetabolism and muscle wasting. At various times during the first week following the injury, livers were isolated and perfused in a recirculating system under well-defined conditions. We applied a steady-state metabolic flux analysis model of liver metabolism and then used k-means clustering to objectively group together reaction flux time profiles. We identified six distinct groups of reactions that were differentially responsive: (1) pentose phosphate pathway (PPP); (2) amino acid oxidation reactions leading to the formation of tricarboxylic acid (TCA) cycle intermediates; (3) gluconeogenesis; (4) TCA-cycle and mitochondrial oxidation; (5) lipolysis, beta-oxidation, and ketone body formation; and (6) urea-cycle. Burn injury sequentially upregulated the urea-cycle, the PPP, and the TCA-cycle, in order, while beta-oxidation and gluconeogenesis remained unchanged. The upregulation of the PPP was transient, whereas the rise in urea- and TCA-cycle fluxes was sustained. An ATP balance predicted an increased production of ATP and energy expenditure starting on day 3 post-burn, which correlated with the induction of the oxidative phosphorylation uncoupler uncoupling protein-2. We conclude that metabolic profiling using flux analysis and clustering analysis is a useful methodology to characterize the differential activation of metabolic pathways in perfused organs and to identify specific key pathways that are sensitive to a stimulus or insult without making a priori assumptions.

PubMed Disclaimer

Publication types

LinkOut - more resources