Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003;14(1):19-29.
doi: 10.1023/a:1023539104747.

Microbial consortia that degrade 2,4-DNT by interspecies metabolism: isolation and characterisation

Affiliations

Microbial consortia that degrade 2,4-DNT by interspecies metabolism: isolation and characterisation

Zita Snellinx et al. Biodegradation. 2003.

Abstract

Two consortia, isolated by selective enrichment from a soil sample of a nitroaromatic-contaminated site, degraded 2,4-DNT as their sole nitrogen source without accumulating one or more detectable intermediates. Though originating from the same sample, the optimised consortia had no common members, indicating that selective enrichment resulted in different end points. Consortium 1 and consortium 2 contained four and six bacterial species respectively, but both had two members that were able to collectively degrade 2,4-DNT. Variovorax paradoxus VM685 (consortium 1) and Pseudomonas sp. VM908 (consortium 2) initiate the catabolism of 2,4-DNT by an oxidation step, thereby releasing nitrite and forming 4-methyl-5-nitrocatechol (4M5NC). Both strains contained a gene similar to the dntAa gene encoding 2,4-DNT dioxygenase. They subsequently metabolised 4M5NC to 2-hydroxy-5-methylquinone (2H5MQ) and nitrite, indicative of DntB or 4M5NC monooxygenase activity. A second consortium member, Pseudomonas marginalis VM683 (consortium 1) and P. aeruginosa VM903, Sphingomonas sp. VM904, Stenotrophomonas maltophilia VM905 or P. viridiflava VM907 (consortium 2), was found to be indispensable for efficient growth of the consortia on 2,4-DNT and for efficient metabolisation of the intermediates 4M5NC and 2H5MQ. Knowledge about the interactions in this step of the degradation pathway is rather limited. In addition, both consortia can use 2,4-DNT as sole nitrogen and carbon source. A gene similar to the dntD gene of Burkholderia sp. strain DNT that catalyses ring fission was demonstrated by DNA hybridisation in the second member strains. To our knowledge, this is the first time that consortia are shown to be necessary for 2,4-DNT degradation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms