Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jun 7;361(9373):1945-51.
doi: 10.1016/S0140-6736(03)13583-0.

Smooth muscle cholinergic denervation hypersensitivity in diverticular disease

Affiliations

Smooth muscle cholinergic denervation hypersensitivity in diverticular disease

Mark Golder et al. Lancet. .

Abstract

Background: Evidence from clinical and laboratory investigations into the causes of diverticular disease suggests that disturbances in cholinergic activity are important, the effector mechanisms of which have yet to be established. We aimed to investigate the role of smooth muscle and neural cholinergic activity in the pathogenesis of this disease.

Methods: Two investigators independently did a blinded immunohistochemical image analysis of localising antibodies to choline acetyltransferase, co-localised with protein gene product (PGP)--a marker of general neural tissue-and smooth muscle muscarinic M3 receptors, on three histological sections of sigmoid colons from ten patients with diverticular disease and ten controls, after resections for rectal tumours. We also did isotonic organ bath experiments to assess muscle strip sensitivities to exogenous acetylcholine.

Findings: In circular muscle, activity of choline acetyltransferase was lower in patients with diverticular disease than in controls: median percentage surface area of choline acetyltransferase over PGP was 17.5% (range 10.0-37.0) in patients with diverticular disease and 47.0% (29.0-54.0) in controls (p<0.0001). M3 receptors were upregulated in patients with diverticular disease compared with controls: the median surface area was 13.2% (6.0-23.3) in patients with diverticular disease and 2.5% (1.6-3.7) in controls (p<0.0001). The sensitivity to exogenous acetylcholine was increased in patients with diverticular disease (mean -log EC(50) 5.6 [SD 0.3]) compared with controls (4.9 [0.5]; difference 0.7 [95% CI 0.3-1.1], p=0.006). In longitudinal muscle, choline acetyltransferase activity was lower in patients with diverticular disease (median 19.5%, range 12.0-30.0) than in controls (47.0%, 35.0-60.0; p<0.0001), with upregulation of M3 receptors in diverticular disease (diverticular disease 7.8% [1.9-20.4], controls 1.7% [0.8-3.0]; p<0.0001). However, sensitivity to exogenous acetylcholine did not differ between the two groups (diverticular disease mean 5.6% [SD 0.3], controls 5.2% [0.4]; difference 0.4% [95% CI -0.02-0.7], p=0.06).

Interpretation: Our results suggest that cholinergic denervation hypersensitivity can affect smooth muscle. Upregulation of smooth muscle M3 receptors might account for specific clinical, physiological, and pharmacological abnormalities associated with diverticular disease.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

LinkOut - more resources