Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Oct;90(4):2629-47.
doi: 10.1152/jn.00722.2002. Epub 2003 Jun 11.

Excitatory and inhibitory intensity tuning in auditory cortex: evidence for multiple inhibitory mechanisms

Affiliations
Free article

Excitatory and inhibitory intensity tuning in auditory cortex: evidence for multiple inhibitory mechanisms

M L Sutter et al. J Neurophysiol. 2003 Oct.
Free article

Abstract

The intensity tuning of excitatory and suppressive domain frequency response areas was investigated in 230 cat primary auditory cortical and 92 posterior auditory field neurons. Suppressive domains were explored using simultaneous 2-tone stimulation with one tone at the best excitatory frequency. The intensity tuning of excitatory and suppressive domains was negatively correlated, supporting the hypothesis that inhibitory sidebands are related to excitatory domain intensity tuning. To further test this hypothesis, we compared the slopes of the edges of suppressive bands to the intensity tuning of excitatory domains. Edges of suppressive bands next to excitatory domains had slopes significantly more slanted toward the excitatory area in neurons with intensity-tuned excitatory domains. This relationship was not observed for suppressive band edges not next to the excitatory domain (e.g., the lower edge of lower suppressive bands). This indicates that intensity tuning ultimately observed in the excitatory domain results from overlapping excitatory and inhibitory inputs. In combination with results using forward masking, our results suggest that there are separate early and late sources of inhibition contributing to cortical frequency response areas, and only the early-stage inhibition contributes to excitatory domain intensity tuning.

PubMed Disclaimer

Publication types

LinkOut - more resources