Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Oct;69(4):1101-8.
doi: 10.1095/biolreprod.103.018010. Epub 2003 Jun 11.

Amino acid transport regulates blastocyst implantation

Affiliations
Review

Amino acid transport regulates blastocyst implantation

Patrick M Martin et al. Biol Reprod. 2003 Oct.

Abstract

Mouse blastocyst outgrowth in vitro and probably implantation in vivo require amino acid signaling via the target of rapamycin (TOR) pathway. This signaling does not simply support protein synthesis and trophoblast differentiation. Rather, it regulates development of trophoblast protrusive activity and may act as a developmental checkpoint for implantation. Moreover, intracellular amino acids per se are insufficient to elicit TOR signaling. Instead, de novo transport of amino acids, and particularly of leucine, stimulate mTOR activity at the blastocyst stage. The activity of the broad-scope and yet leucine-selective amino acid transport system B0,+ could produce such increases in intracellular amino acid concentrations. For example, system B0,+ uses a Na+ gradient to drive amino acid uptake, and the Na+ concentration in uterine secretions increases by nearly two-fold about 18 h before implantation. The resultant mTOR signaling could trigger polyamine, insulin-like growth factor II, and nitric oxide production in blastocysts and the increased cell motility sometimes associated with synthesis of these bioactive molecules.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources