Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992 Oct;6(10):1653-64.
doi: 10.1210/mend.6.10.1280328.

The CRES gene: a unique testis-regulated gene related to the cystatin family is highly restricted in its expression to the proximal region of the mouse epididymis

Affiliations
Comparative Study

The CRES gene: a unique testis-regulated gene related to the cystatin family is highly restricted in its expression to the proximal region of the mouse epididymis

G A Cornwall et al. Mol Endocrinol. 1992 Oct.

Abstract

As a result of examining regional-specific gene expression in the mouse epididymis, a novel cystatin-related epididymal specific (CRES) gene was identified. Substantial homology between the CRES gene and members of the cystatin family of cysteine proteinase inhibitors was observed at the amino acid level. This homology included the presence of four highly conserved cysteine residues in exact alignment with the cystatins as well as other regions of sequence characteristic of the cystatins. However, unlike the cystatins, the CRES gene does not contain specific highly conserved sequence motifs thought to be necessary for cysteine proteinase inhibitory activity. Also, in contrast to the ubiquitous expression of the cystatin C gene, Northern blot analysis and in situ hybridization demonstrated that the CRES gene is very restricted in its expression. The 0.75-kilobase CRES transcript is dramatically restricted to the very proximal caput region of the epididymis with 15- to 20-fold less expression in the testis and no expression detected in any of the other 24 tissues examined. In addition, the CRES transcript disappears 2-3 weeks after castration, suggesting a dependence on androgens. However, its expression remained undetectable even after the administration of testosterone or dihydrotestosterone. Unilateral castration also resulted in the disappearance of the CRES mRNA from the castrate epididymis, but not from the intact epididymis, suggesting that testicular factors or hormones other than androgens may be involved in the regulation of CRES gene expression. Therefore, the unique sequence of the CRES gene as well as its highly restricted expression and unusual regulation by the testis suggests that it has a very specialized role in the epididymis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms