Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Apr;55(4):527-31.
doi: 10.1211/0022357021008.

Involvement of inwardly rectifying K+ channels in secretory responses of human ileal mucosa

Affiliations

Involvement of inwardly rectifying K+ channels in secretory responses of human ileal mucosa

David E Burleigh. J Pharm Pharmacol. 2003 Apr.

Abstract

In acute secretory diarrhoea the primary event driving fluid secretion is a transcellular, electrogenic, serosal to mucosal transport of chloride ions. Such transport requires the maintenance of an electrically negative cell membrane voltage, which is achieved through a basolateral outward leakage of potassium ions. The aim of this study was to investigate the nature of K(+) channel involvement in facilitating secretory processes in the human ileum. Muscle-stripped mucosal preparations of human ileal mucosa were set up in Ussing chambers for recording short-circuit current and transmucosal conductance. Escherichia coli heat-stable toxin and vasoactive intestinal peptide (VIP) produced concentration-dependent increases in short-circuit current. Responses to the heat-stable toxin were unaffected by basolateral application of 4-aminopyridine (5 mM), glibenclamide (10 microM) or a combination of charybdotoxin (0.3 microM) plus apamin (0.3 microM). However, basolateral barium (0.2-5 mM) caused a concentration-dependent inhibition. Responses to VIP were similarly affected by barium (0.05-1 mM). These results suggested that electrogenic chloride transport by human ileal mucosa required the presence of basolateral K(+) channels. The use of selective K(+)-channel inhibitors and low concentrations of barium suggested that the channels involved might be of the inwardly rectifying type.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources