Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Oct;285(4):H1404-10.
doi: 10.1152/ajpheart.00235.2003. Epub 2003 Jun 12.

Superoxide-NO interaction decreases flow- and agonist-induced dilations of coronary arterioles in Type 2 diabetes mellitus

Affiliations
Free article

Superoxide-NO interaction decreases flow- and agonist-induced dilations of coronary arterioles in Type 2 diabetes mellitus

Zsolt Bagi et al. Am J Physiol Heart Circ Physiol. 2003 Oct.
Free article

Abstract

Type 2 diabetes mellitus (T2-DM) markedly increases the incidence of ischemic heart disease (IHD) and, consequently, mortality. However, the underlying mechanisms leading to IHD in T2-DM are not completely understood. We hypothesized that in T2-DM the regulation of coronary microvascular resistance by local mechanisms is altered. Thus, in coronary arterioles (diameter: approximately 80 microm) isolated from male mice with T2-DM (C57BL/KsJ-db/db) and control littermates, responses to changes in intraluminal pressure, flow, and agonists with known mechanisms of action were studied. Increases in pressure (from 20 to 120 mmHg) resulted in similar myogenic responses of coronary arterioles of control and db/db mice, whereas dilations in response to cumulative concentrations of ACh and the nitric oxide (NO) donor NONOate were significantly decreased compared with those of control vessels. On the other hand, responses to adenosine were not different between vessels of control and db/db mice. Increases in flow (0-20 microl/min) resulted in dilations of control vessels (maximum: 38 +/- 4%) that were inhibited by the NO synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME). In contrast, arterioles of db/db mice exhibited greatly reduced dilations to flow (maximum: 4 +/- 6%) that were unaffected by L-NAME. In carotid arteries of db/db mice, superoxide dismutase (SOD)-sensitive, enhanced superoxide production was detected by dihydroethydine staining and lucigenin enhanced chemiluminescence. Correspondingly, intraluminal administration of SOD significantly augmented flow-, ACh-, and NONOate-induced dilations of diabetic arterioles, and then flow- and ACh-induced responses could be inhibited by L-NAME. Collectively, these findings suggest that in T2-DM, due to an enhanced superoxide production, NO mediation of agonist- and flow-induced dilations of coronary arterioles is reduced. This alteration in the regulation of coronary microvascular resistance may contribute to the development of IHD in T2-DM.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources