Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul;126(Pt 7):1579-89.
doi: 10.1093/brain/awg163. Epub 2003 Apr 22.

Inverse U-shaped curve for age dependency of torsional eye movement responses to galvanic vestibular stimulation

Affiliations

Inverse U-shaped curve for age dependency of torsional eye movement responses to galvanic vestibular stimulation

Klaus Jahn et al. Brain. 2003 Jul.

Abstract

To investigate age dependent changes we analysed torsional eye movement responses to binaural and monaural galvanic vestibular stimulation (GVS) in 57 healthy subjects (20-69 years old). GVS (1-3 mA) induced torsional eye movements consisting of static torsion toward the anode (amplitude 1-6 degrees ) and superimposed torsional nystagmus (slow phase velocity 0.5-3 degrees /s, quick phase amplitude 0.5-2 degrees, nystagmus frequency 0.75-1.5 s-1). Static ocular torsion and torsional nystagmus increased from the third to the sixth decade and decreased in older subjects, e.g. slow phase velocity increased from 1.5 degrees /s (20-29 years) to 2.9 degrees /s (50-59 years) and decreased to 2.5 degrees /s for the seventh decade (60-69 years). Thus, an inverse U-shaped curve was found for the dependence of torsional eye movement responses on age. All structures relevant for vestibular function degenerate with age, but at varying times. Since hair cell loss precedes those seen in the vestibular nerve and Scarpa's ganglion, the decrease in hair cell counts could be compensated for by increased sensitivity of afferent nerve fibres or central mechanisms. Increased sensitivity could thus maintain normal function despite reduced peripheral input. As GVS acts at the vestibular nerve (thereby bypassing the hair cells), electrical stimulation should be more efficient in subjects with the beginning of hair cell degeneration, as seen in our data up to the sixth decade. The degeneration of nerve fibres, ganglion cells and central neurons becomes evident at older ages. Thus, the compensatory increase in sensitivity breaks down and GVS-induced eye movements decline-a finding that is reflected by the inverse U-shaped curve for age dependency presented in this study.

PubMed Disclaimer