Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Sep;24(20):3543-53.
doi: 10.1016/s0142-9612(03)00153-4.

Thermal and photochemical nitric oxide release from S-nitrosothiols incorporated in Pluronic F127 gel: potential uses for local and controlled nitric oxide release

Affiliations

Thermal and photochemical nitric oxide release from S-nitrosothiols incorporated in Pluronic F127 gel: potential uses for local and controlled nitric oxide release

Sílvia Mika Shishido et al. Biomaterials. 2003 Sep.

Abstract

The local delivery of nitric oxide (nitrogen monoxide, NO) by thermal or photochemical means to target cells or organs has a great potential in several biomedical applications, especially if the NO donors are incorporated into non-toxic viscous matrices. In this work, we have shown that the NO donors S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylcysteine (SNAC) can be incorporated into F127 hydrogels, from where NO can be released thermally or photochemically (with lambda(irr)>480nm). High sensitivity differential scanning calorimetry (HSDSC) and a new spectrophotometric method, were used to characterize the micellization and the reversal thermal gelation processes of the F127 hydrogels containing NO donors, and to modulate the gelation temperatures to the range 29-32 degrees C. Spectral monitoring of the S-NO bond cleavage showed that the initial rates of thermal and photochemical NO release (ranging from 2 to 45 micromoll(-1)min(-1)) are decreased in the hydrogel matrices, relative to those obtained in aqueous solutions. This stabilization effect was assigned to a cage recombination mechanism and offers an additional advantage for the storage and handling of S-nitrosothiols. These results indicate that F127 hydrogels might be used for the thermal and photochemical delivery of NO from S-nitrosothiols to target areas in biomedical applications.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources