Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Sep;44(9):1614-21.
doi: 10.1194/jlr.M200469-JLR200. Epub 2003 Jun 16.

Inhibition of ileal bile acid transport and reduced atherosclerosis in apoE-/- mice by SC-435

Affiliations
Free article

Inhibition of ileal bile acid transport and reduced atherosclerosis in apoE-/- mice by SC-435

B Ganesh Bhat et al. J Lipid Res. 2003 Sep.
Free article

Abstract

Blocking intestinal bile acid absorption by inhibiting the apical sodium codependent bile acid transporter (ASBT) is a target for increasing hepatic bile acid synthesis and reducing plasma LDL cholesterol. SC-435 was identified as a potent inhibitor of ASBT (IC50 = 1.5 nM) in cells transfected with the human ASBT gene. Dietary administration of 3 mg/kg to 30 mg/kg SC-435 to apolipoprotein E-/- (apoE-/-) mice increased fecal bile acid excretion by >2.5-fold. In vivo inhibition of ASBT also resulted in significant increases of hepatic mRNA levels for cholesterol 7alpha-hydroxylase and HMG-CoA reductase. Administration of 10 mg/kg SC-435 for 12 weeks to apoE-/- mice lowered serum total cholesterol by 35% and reduced aortic root lesion area by 65%. Treatment of apoE-/- mice also resulted in decreased expression of ileal bile acid binding protein and hepatic nuclear hormone receptor small heterodimer partner, direct target genes of the farnesoid X receptor (FXR), suggesting a possible role of FXR in SC-435 modulation of cholesterol homeostasis. In dogs, SC-435 treatment reduced serum total cholesterol levels by </=12% and, in combination with atorvastatin treatment, caused an additional reduction of 25%. These results suggest that specific inhibition of ASBT is a novel therapeutic approach for treatment of hypercholesterolemia resulting in a decreased risk for atherosclerosis.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources