Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul;5(7):469-80.
doi: 10.1046/j.1462-5822.2003.00293.x.

Maturation of the Coxiella burnetii parasitophorous vacuole requires bacterial protein synthesis but not replication

Affiliations

Maturation of the Coxiella burnetii parasitophorous vacuole requires bacterial protein synthesis but not replication

Dale Howe et al. Cell Microbiol. 2003 Jul.

Abstract

This study examined whether protein synthesis and replication are required for maturation and fusogenicity of the lysosomal-like, large and spacious parasitophorous vacuole (PV) of Coxiella burnetii, an obligate intracellular bacterium. Large and spacious PV with multiple non-replicating C. burnetii were observed by phase microscopy in Vero cells infected at a multiplicity of infection of ten and treated with a bacteriostatic concentration of nalidixic acid or carbenicillin, antimicrobics that inhibit DNA and cell wall biosynthesis respectively. Conversely, large and spacious PV were not observed in cells treated with a bacteriostatic concentration of the protein synthesis inhibitor chloramphenicol. Rather, fluorescence microscopy of individual cells revealed multiple, acidic PV harbouring a single organism tightly bounded by a LAMP-1 positive vacuolar membrane. These vacuoles homotypically fused to form a large and spacious PV upon removal of the drug. Chloramphenicol also inhibited trafficking of latex beads to large and spacious PV and caused mature PV to collapse. Collectively, these results demonstrate that C. burnetii protein synthesis, but not replication, is required for fusion between nascent C. burnetii PV and latex bead phagosomes, and also for formation and maintenance of large and spacious, replicative PV. However, transit of nascent PV through the endocytic pathway to ultimately acquire lysosomal markers appears to occur irrespective of Coxiella protein synthesis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources