Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992 Nov;51(1):129-35.
doi: 10.1016/0306-4522(92)90477-j.

Excitotoxic lesions of rat basal forebrain: differential effects on choline acetyltransferase in the cortex and amygdala

Affiliations
Comparative Study

Excitotoxic lesions of rat basal forebrain: differential effects on choline acetyltransferase in the cortex and amygdala

R J Boegman et al. Neuroscience. 1992 Nov.

Abstract

Previous studies have shown that basal forebrain lesions using different excitotoxins produce similar decreases in cortical choline acetyltransferase, but differential effects on memory. However, basal forebrain cholinergic neurons send efferents to the amygdala and cortex. The present studies compared the effects of several excitotoxins on choline acetyltransferase levels in both of these structures. Lesions of the basal forebrain were made in rats by infusing different doses of either alpha-amine-3-hydroxy-5-methyl-4-isoxazole propionic acid, ibotenic acid, quisqualic acid, quinolinic acid or N-methyl-D-aspartic acid and measuring choline acetyltransferase seven days later. All of the excitotoxins exerted a differential response on cholinergic neurons of the basal forebrain projecting to the cortex or amygdala. Quinolinic acid was a more potent neurotoxin to cholinergic neurons innervating the amygdala than those projecting to the cortex. In contrast, quisqualic acid and alpha-amine-3-hydroxy-5-methyl-4-isoxazole were more potent neurotoxins to the cortical projection. alpha-Amine-3-hydroxy-5-methyl-4-isoxazole propionic acid was the most potent excitotoxin for destroying cholinergic neurons innervating either the cortex or amygdala. A parallel neurotoxic response was obtained in the cortex and amygdala following infusion of ibotenic acid or N-methyl-D-aspartic acid with little selectivity for choline acetyltransferase depletion in the cortex or amygdala. Histological analysis of the injection site revealed that acetylcholinesterase-positive neurons were destroyed by the excitotoxins in a dose-dependent manner. Excitotoxins (ibotenic acid, quinolinic acid, N-methyl-D-aspartic acid) that produce the greatest impairments in memory were found to produce the greatest depletion of choline acetyltransferase in the amygdala.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources