Cortical heterogeneity: implications for visual processing and polysensory integration
- PMID: 12815250
- DOI: 10.1023/a:1024182228103
Cortical heterogeneity: implications for visual processing and polysensory integration
Abstract
Recent studies have revealed substantial variation in pyramidal cell structure in different cortical areas. Moreover, cell morphology has been shown to vary in a systematic fashion such that cells in visual association areas are larger and more spinous than those in the primary visual area. Various aspects of these structural differences appear to be important in influencing neuronal function. At the cellular level, differences in the branching patterns in the dendritic arbour may allow for varying degrees of non-linear compartmentalisation. Differences in total dendritic length and spine number may determine the number of inputs integrated by individual cells. Variations in spine density and geometry may affect cooperativity of inputs and shunting inhibition, and the tangential dimension of the dendritic arbours may determine sampling strategies within cortex. At the systems level, regional variation in pyramidal cell structure may determine the degree of recurrent excitation through reentrant circuits influencing the discharge properties of individual neurones and the functional signature of the circuits they compose. The ability of pyramidal neurones in visual areas of the parietal and temporal lobes to integrate large numbers of excitatory inputs may also facilitate cortical binding. Here I summarise what I consider to be among the most salient, and testable, aspects of an inter-relationship between morphological and functional heterogeneity in visual cortex.
Similar articles
-
Cellular heterogeneity in cerebral cortex: a study of the morphology of pyramidal neurones in visual areas of the marmoset monkey.J Comp Neurol. 1999 Dec 6;415(1):33-51. doi: 10.1002/(sici)1096-9861(19991206)415:1<33::aid-cne3>3.0.co;2-m. J Comp Neurol. 1999. PMID: 10540356
-
Interlaminar differences in the pyramidal cell phenotype in cortical areas 7 m and STP (the superior temporal polysensory area) of the macaque monkey.Exp Brain Res. 2001 May;138(2):141-52. doi: 10.1007/s002210100705. Exp Brain Res. 2001. PMID: 11417455
-
Cortical area and species differences in dendritic spine morphology.J Neurocytol. 2002 Mar-Jun;31(3-5):337-46. doi: 10.1023/a:1024134312173. J Neurocytol. 2002. PMID: 12815251
-
Spine distribution in cortical pyramidal cells: a common organizational principle across species.Prog Brain Res. 2002;136:109-33. doi: 10.1016/s0079-6123(02)36012-6. Prog Brain Res. 2002. PMID: 12143375 Review. No abstract available.
-
Molecular control of cortical dendrite development.Annu Rev Neurosci. 2002;25:127-49. doi: 10.1146/annurev.neuro.25.112701.142932. Epub 2002 Mar 19. Annu Rev Neurosci. 2002. PMID: 12052906 Review.
Cited by
-
Pyramidal cell specialization in the occipitotemporal cortex of the Chacma baboon (Papio ursinus).Exp Brain Res. 2005 Dec;167(4):496-503. doi: 10.1007/s00221-005-0057-3. Epub 2005 Sep 23. Exp Brain Res. 2005. PMID: 16180040
-
Similarity in Neuronal Firing Regimes across Mammalian Species.J Neurosci. 2016 May 25;36(21):5736-47. doi: 10.1523/JNEUROSCI.0230-16.2016. J Neurosci. 2016. PMID: 27225764 Free PMC article.
-
Influence of highly distinctive structural properties on the excitability of pyramidal neurons in monkey visual and prefrontal cortices.J Neurosci. 2012 Oct 3;32(40):13644-60. doi: 10.1523/JNEUROSCI.2581-12.2012. J Neurosci. 2012. PMID: 23035077 Free PMC article.
-
Differential responses of the insular cortex gyri to autonomic challenges.Auton Neurosci. 2012 May 21;168(1-2):72-81. doi: 10.1016/j.autneu.2012.01.009. Epub 2012 Feb 17. Auton Neurosci. 2012. PMID: 22342370 Free PMC article.
-
Mapping the mosaic sequence of primate visual cortical development.Front Neuroanat. 2015 Oct 20;9:132. doi: 10.3389/fnana.2015.00132. eCollection 2015. Front Neuroanat. 2015. PMID: 26539084 Free PMC article.