Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Nov;7(11):1337-44.
doi: 10.1002/jbmr.5650071114.

Effects of stem cell factor on osteoclast-like cell formation in long-term human marrow cultures

Affiliations

Effects of stem cell factor on osteoclast-like cell formation in long-term human marrow cultures

A Demulder et al. J Bone Miner Res. 1992 Nov.

Abstract

Stem cell factor (SCF) is a newly described hematopoietic growth factor that stimulates the growth of primitive hematopoietic progenitors and mast cells. Since the osteoclast precursor is hematopoietic in origin, we tested SCF for its capacity to stimulate the formation of osteoclast-like multinucleated cells (MNC) in long-term human marrow cultures. These MNC express an osteoclast phenotype and form resorption lacunae on calcified matrices. Addition of SCF alone (0.1 pg/ml to 100 ng/ml) to long-term marrow cultures did not increase MNC formation. However, treatment of these cultures sequentially with SCF for 1 week followed by 1,25-(OH)2D3 for the second and third weeks of culture significantly enhanced MNC formation. [3H]Thymidine incorporation studies showed that SCF increased the proliferation of MNC precursors. These data suggested that SCF was acting on early MNC precursors. We then tested the capacity of SCF to stimulate the formation of colonies of committed precursors for osteoclast-like MNC. SCF (20 pg/ml to 20 ng/ml) enhanced osteoclast precursor formation in unfractionated bone marrow mononuclear cells but was unable to increase osteoclast precursor formation when a highly purified population of hematopoietic precursors was used as the target cells for SCF. These data suggest that SCF works in concert with other factors produced by nonhematopoietic marrow cells to increase the precursor pool for osteoclasts and that other factors, such as 1,25-(OH)2D3, complete the differentiation process to the mature osteoclast.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources