Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul;13(7):782-92.
doi: 10.1093/cercor/13.7.782.

Synaptic influence of hippocampus on pyramidal cells of the rat prefrontal cortex: an in vivo intracellular recording study

Affiliations

Synaptic influence of hippocampus on pyramidal cells of the rat prefrontal cortex: an in vivo intracellular recording study

Eric Dégenètais et al. Cereb Cortex. 2003 Jul.

Abstract

The hippocampus and prefrontal cortex are two structures implicated in learning and memory and are related through a direct excitatory pathway. The characteristics of the synaptic influence of the hippocampus on pyramidal cells of the prefrontal cortex were determined using intracellular recordings in anesthetized rats. Single-pulse stimulation of the hippocampus induced an early EPSP of fixed latency in most of the recorded pyramidal cells (n = 106/116) thereby demonstrating a monosynaptic connection between hippocampal neurons and pyramidal cells of the prefrontal cortex. Furthermore, the EPSP was followed by a prolonged IPSP and suggests a simultaneous engagement of pyramidal and non-pyramidal neurons that may ultimately constrain the spread of excitation in response to hippocampal input. Paired-pulse stimulation induced short-term modifications in the synaptic responses and this short-term plasticity may contribute to the temporal filtering of information. Finally, tetanic stimulation of the hippocampus produced long-term potentiation of the monosynaptic EPSP with a concomitant potentiation of the IPSP, indicating that the hippocampo-prefrontal network can participate in the formation and consolidation of memories. In conclusion, the characteristics of the synaptic transmission in the hippocampo-prefrontal cortex pathway further supports the existence of a cooperative relationship between two structures known to be involved in higher cognitive processes.

PubMed Disclaimer

Publication types

LinkOut - more resources