Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Jul;15(4):430-5.
doi: 10.1097/00002281-200307000-00010.

Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis

Affiliations
Review

Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis

Eleonora Gambineri et al. Curr Opin Rheumatol. 2003 Jul.

Abstract

Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX) is one of a group of clinical syndromes that present with multisystem autoimmune disease suggesting a phenotype of immune dysregulation. Clinically, IPEX manifests most commonly with diarrhea, insulin-dependent diabetes mellitus, thyroid disorders, and eczema. FOXP3, the gene responsible for IPEX, maps to chromosome Xp11.23-Xq13.3 and encodes a putative DNA-binding protein of the forkhead family. Recent data indicate that FOXP3 is expressed primarily in the CD4+CD25+ regulatory T-cell subset, where it may function as a transcriptional repressor and key modulator of regulatory T-cell fate and function. This review describes the clinical features of IPEX and the structure, function, and known mutations of FOXP3 that provide important insights into its role in maintenance of immune homeostasis.

PubMed Disclaimer