Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain
- PMID: 12820957
- DOI: 10.1016/s1097-2765(03)00181-3
Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain
Abstract
Rhomboid intramembrane proteases initiate cell signaling during Drosophila development and Providencia bacterial growth by cleaving transmembrane ligand precursors. We have determined how specificity is achieved: Drosophila Rhomboid-1 is a site-specific protease that recognizes its substrate Spitz by a small region of the Spitz transmembrane domain (TMD). This substrate motif is necessary and sufficient for cleavage and is composed of residues known to disrupt helices. Rhomboids from diverse organisms including bacteria and vertebrates recognize the same substrate motif, suggesting that they use a universal targeting strategy. We used this information to search for other rhomboid substrates and identified a family of adhesion proteins from the human parasite Toxoplasma gondii, the TMDs of which were efficient substrates for rhomboid proteases. Intramembrane cleavage of these proteins is required for host cell invasion. These results provide an explanation of how rhomboid proteases achieve specificity, and allow some rhomboid substrates to be predicted from sequence information.
Similar articles
-
Sequence-specific intramembrane proteolysis: identification of a recognition motif in rhomboid substrates.Mol Cell. 2009 Dec 25;36(6):1048-59. doi: 10.1016/j.molcel.2009.11.006. Mol Cell. 2009. PMID: 20064469 Free PMC article.
-
Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids.Curr Biol. 2002 Sep 3;12(17):1507-12. doi: 10.1016/s0960-9822(02)01092-8. Curr Biol. 2002. PMID: 12225666
-
A family of Rhomboid intramembrane proteases activates all Drosophila membrane-tethered EGF ligands.EMBO J. 2002 Aug 15;21(16):4277-86. doi: 10.1093/emboj/cdf434. EMBO J. 2002. PMID: 12169630 Free PMC article.
-
Structural and mechanistic principles of intramembrane proteolysis--lessons from rhomboids.FEBS J. 2013 Apr;280(7):1579-603. doi: 10.1111/febs.12199. Epub 2013 Mar 20. FEBS J. 2013. PMID: 23432912 Review.
-
Role of rhomboid proteases in bacteria.Biochim Biophys Acta. 2013 Dec;1828(12):2849-54. doi: 10.1016/j.bbamem.2013.03.012. Epub 2013 Mar 18. Biochim Biophys Acta. 2013. PMID: 23518036 Review.
Cited by
-
Structure and mechanism of rhomboid protease.J Biol Chem. 2013 May 31;288(22):15430-6. doi: 10.1074/jbc.R112.422378. Epub 2013 Apr 12. J Biol Chem. 2013. PMID: 23585569 Free PMC article. Review.
-
The backbone dynamics of the amyloid precursor protein transmembrane helix provides a rationale for the sequential cleavage mechanism of γ-secretase.J Am Chem Soc. 2013 Jan 30;135(4):1317-29. doi: 10.1021/ja3112093. Epub 2013 Jan 16. J Am Chem Soc. 2013. PMID: 23265086 Free PMC article.
-
Structural basis for intramembrane proteolysis by rhomboid serine proteases.Proc Natl Acad Sci U S A. 2007 Jan 9;104(2):462-6. doi: 10.1073/pnas.0609773104. Epub 2006 Dec 26. Proc Natl Acad Sci U S A. 2007. PMID: 17190827 Free PMC article.
-
A Sequential Model of Host Cell Killing and Phagocytosis by Entamoeba histolytica.J Parasitol Res. 2011;2011:926706. doi: 10.1155/2011/926706. Epub 2011 Jan 20. J Parasitol Res. 2011. PMID: 21331284 Free PMC article.
-
Allosteric regulation of rhomboid intramembrane proteolysis.EMBO J. 2014 Sep 1;33(17):1869-81. doi: 10.15252/embj.201488149. Epub 2014 Jul 9. EMBO J. 2014. PMID: 25009246 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases