Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Dec 8;229(1):1-7.
doi: 10.1016/0014-2999(92)90278-c.

Delta-opioid-receptor activation by [D-Pen2,D-Pen5]enkephalin and morphine inhibits substance P release from trigeminal nucleus slices

Affiliations

Delta-opioid-receptor activation by [D-Pen2,D-Pen5]enkephalin and morphine inhibits substance P release from trigeminal nucleus slices

H Suarez-Roca et al. Eur J Pharmacol. .

Abstract

The release of substance P (SP) from spinal dorsal horn slices is partially inhibited by micromolar concentrations of selective delta-opioid receptor agonists. In the present study, we have examined the effect of nanomolar concentrations of [D-Pen2,D-Pen5]enkephalin (DPDPE, delta-opioid receptor agonist) and low micromolar of concentrations morphine on K(+)-evoked SP release from rat trigeminal nucleus caudalis (TNC) slices. DPDPE and morphine inhibited SP release with an apparent maximal effect at 3 nM and at 3 microM, respectively. DPDPE and morphine produced U-shaped concentration-response curves that were completely autoinhibited at 100 nM DPDPE and 1 microM morphine. The inhibition of SP release produced by 3 nM DPDPE and 3 microM morphine was blocked by the opioid receptor antagonists naloxone (30 nM; non-selective) and ICI 174,864 (0.3 microM; delta-selective) but not by nor-binaltorphimine (3 nM n-BNI; kappa-selective), naloxonazine (1 nM; micro 1-selective) or beta-funaltrexamine (20 nM beta-FNA; mu-selective). These findings indicate that delta-opioid receptor-mediated inhibition of SP release from TNC can be achieved by nanomolar concentrations of selective delta-opioid receptor agonists. Activation of delta-opioid receptors by morphine might be involved in the residual analgesia observed after mu 1-opioid receptor blockade and in the analgesia produced by high doses of morphine.

PubMed Disclaimer

Publication types

LinkOut - more resources