Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Dec;263(6 Pt 1):L692-707.
doi: 10.1152/ajplung.1992.263.6.L692.

CFTR channels in immortalized human airway cells

Affiliations

CFTR channels in immortalized human airway cells

C Haws et al. Am J Physiol. 1992 Dec.

Abstract

The cystic fibrosis (CF) gene codes for CF transmembrane regulator (CFTR), a small-conductance linear Cl- channel, but numerous studies have identified a larger conductance, rectifying Cl- channel as the adenosine 3',5'-cyclic monophosphate (cAMP)-regulated channel that is defective in airway cells. We examined Cl- conductance in a bronchial epithelial cell line that expresses CFTR, 16HBE14o-, (CFTR+) and in an airway cell line that does not, 9HTEo-/S, (CFTR-). Ionomycin or hypotonic Ringer increased iodide efflux from both cell lines; however, forskolin increased iodide efflux or whole cell Cl- currents only in CFTR+ cells. Forskolin-stimulated whole cell currents were linear, voltage independent, and blocked by iodide. Cell-attached and outside-out patches from confluent CFTR+ but not CFTR- cells revealed 6-pS channels having linear current-voltage relations, permselectivity Cl > I (partial block by external iodide), and little or no inhibition by 5-nitro-2-(3-phenylpropylamino)-benzoate. The number of active channels per patch increased from 0.6 to 3.0 after forskolin. Channels closed after excision with tau = 4 s, but activity could be prolonged with ATP or protein kinase A plus ATP. Channels were modeled with one open and four closed states and show apparent cooperativity in gating. Rectifying Cl- channels previously implicated in CF were not seen in cell-attached recordings from either cell line but were abundant in excised patches from both cell lines. Thus CFTR channels are the pathway for cAMP-mediated Cl- conductance in these human airway cells, Ca2+ and swelling-induced channels do not require CFTR, and CFTR-cells display a CF phenotype.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources