Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Aug;18(4):234-9.
doi: 10.1034/j.1399-302x.2003.00072.x.

Starvation survival, growth and recovery of Enterococcus faecalis in human serum

Affiliations

Starvation survival, growth and recovery of Enterococcus faecalis in human serum

D Figdor et al. Oral Microbiol Immunol. 2003 Aug.

Abstract

The ability of Enterococcus faecalis to survive starvation for long periods in the obturated root canal is likely to be an important factor in the pathogenesis and maintenance of a persistent infection after endodontic treatment. The response of E. faecalis to starvation survival in water and glucose-, phosphate- or amino acid-limited chemically defined medium was studied, along with the capacity for growth and recovery of starved cells of E. faecalis in pooled human serum. After an initial rapid fall in cell numbers, a small remaining population of E. faecalis was able to survive in water for over 4 months and in nutrient-limited media for extended periods. A high cell density at the onset of starvation was critical for the ability of E. faecalis to endure prolonged nutrient limitation. Upon starvation, a static population of starved cells developed and were apparently in a minimal metabolic state, since blocking cell wall synthesis with penicillin G or inhibiting DNA synthesis with norfloxacin during starvation resulted in limited change in the rate of loss of viable cells. In 50% serum, E. faecalis grew, then stabilized at a relatively constant population of 106 colony-forming units/ml for 4 months, irrespective of the initial cell density. In summary, E. faecalis is capable of withstanding prolonged periods of starvation in a minimal metabolic state provided that there is a high cell density at the onset of starvation. Starved cells were capable of recovery upon addition of human serum.

PubMed Disclaimer

Publication types

LinkOut - more resources