Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul;77(1):93-9.
doi: 10.1016/s0014-4835(03)00065-4.

Changes in the refractive index of lens fibre membranes during maturation--impact on lens transparency

Affiliations

Changes in the refractive index of lens fibre membranes during maturation--impact on lens transparency

Ralph Michael et al. Exp Eye Res. 2003 Jul.

Abstract

Purpose: Local variations in refractive index are the physical cause of light scattering in a material or tissue and also induce phase changes of propagating light waves. The goal of this study was to analyse local differences in refractive index by phase contrast microscopy of sections of human lenses.

Methods: Refractive index was estimated by immersion refractometry. Cryo-sections of quick-frozen human donor lenses were embedded in a graded series of bovine serum albumin solutions, and in immersion oil, ranging in refractive index from 1.34 to 1.52.

Results: Fibre membranes in the lens cortex prove to have a refractive index considerably above that of fibre cytoplasm at the same location. Fibre membranes in the lens nucleus have a refractive index approximately the same as that of fibre cytoplasm at the same location.

Conclusion: In the lens cortex, transparency is obtained by a high spatial order of the lens fibre lattice to compensate for the light scattering caused by differences in refractive index between fibre membranes and cytoplasm. In the lens nucleus, high spatial order is less important, because the minor differences in the refractive index between fibre membranes and fibre cytoplasm lead only to minimal scattering.

PubMed Disclaimer

Publication types

LinkOut - more resources