Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003:229:181-96.
doi: 10.1385/1-59259-393-3:181.

Airway epithelia

Affiliations

Airway epithelia

Larry G Johnson et al. Methods Mol Biol. 2003.

Abstract

Cystic fibrosis (CF) is a common inherited disorder affecting a variety of epithelial tissues. The disease is caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR) that lead to abnormal secretions, recurrent infection and inflammation, bronchiectasis, and premature death. Because airways disease is the major cause of morbidity and mortality in cystic fibrosis, gene therapy efforts have focused on luminal delivery of vector to the airways of CF patients. Retroviruses are attractive as a gene transfer vector system since integration of the wild-type CFTR cDNA into the host genome may lead to long-term expression and perhaps, a cure. However, simple retroviruses are limited as vectors for airway gene transfer by the low rates of epithelial cell proliferation in human airways (∼0.1–0.2%) combined with the traditionally low titers. Advances in vector design and production have improved titers, and the development of human and animal lentiviruses may help overcome the requirement for cell proliferation. These developments have raised hopes for retroviral approaches for treatment of CF lung disease.

PubMed Disclaimer

References

    1. Naldini L., Blomer U., Gage F. H., Trono D., Verma I. M. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. USA. 1996;93:11382–11388. doi: 10.1073/pnas.93.21.11382. - DOI - PMC - PubMed
    1. Naldini L., Blomer U., Gallay P., et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 1996;272:263–267. doi: 10.1126/science.272.5259.263. - DOI - PubMed
    1. Naldini L. Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr. Opin. Biotechnol. 1998;9:457–463. doi: 10.1016/S0958-1669(98)80029-3. - DOI - PubMed
    1. Zufferey R., Nagy D., Mandel R. J., Naldini L., Trono D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 1997;15:871–875. doi: 10.1038/nbt0997-871. - DOI - PubMed
    1. Zufferey R., Dull T., Mandel R. J., et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 1998;72:9873–9880. - PMC - PubMed

Publication types

LinkOut - more resources