Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Mar;94(3):230-4.
doi: 10.1111/j.1349-7006.2003.tb01425.x.

Regulation of TGF-beta signaling and its roles in progression of tumors

Affiliations
Review

Regulation of TGF-beta signaling and its roles in progression of tumors

Kohei Miyazono et al. Cancer Sci. 2003 Mar.

Abstract

Transforming growth factor-beta (TGF-beta) is a potent growth inhibitor of most types of cells; therefore, perturbations of TGF-beta signaling are believed to result in progression of various tumors. On the other hand, TGF-beta has been shown to act as an oncogenic cytokine through induction of extracellular matrices, angiogenesis, and immune suppression. A wide variety of effects of TGF-beta are mediated by physical interaction of signal transducer Smad proteins with various transcription factors. Among these, Runx3 plays a pivotal role in prevention of gastric cancer. TGF-beta signaling is regulated by various mechanisms in the cytoplasm and nucleus. Inhibitory Smads (I-Smads) repress TGF-beta signaling mainly by interacting with activated TGF-beta receptors. Smad ubiquitin regulatory factors (Smurfs) play important roles in facilitating the inhibitory signals induced by I-Smads. In addition, the transcriptional co-repressors c-Ski and SnoN interact with Smads, and repress transcription induced by TGF-beta. Abnormalities of these regulators of TGF-beta signaling may thus participate in the progression of various tumors.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor‐β in human disease. N Engl J Med 2000; 342: 1350–8. - PubMed
    1. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B, Brattain M, Willson JKV. Inactiva‐tion of the type II TGF‐β receptor in colon cancer cells with microsatellite instability. Science 1995; 268: 1336–8. - PubMed
    1. Hahn SA, Schutte M, Hoque ATMS, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, Kern SE. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996; 271: 350–3. - PubMed
    1. Miyaki M, Lijima T, Konishi M, Sakai K, Ishii A, Yasuno M, Hishima T, Koike M, Shitara N, Iwama T, Utsunomiya J, Kuroki T, Mori T. Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene 1999; 18: 3098–103. - PubMed
    1. Derynck R, Akhurst RJ, Balmain A. TGF‐β signaling in tumor suppression and cancer progression. Nat Genet 2001; 29: 117–29. - PubMed

Publication types

Substances

LinkOut - more resources