Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Nov;112(5):598-603.
doi: 10.1093/oxfordjournals.jbchem.a123946.

Purification and characterization of a novel thermostable lipase from Pseudomonas cepacia

Affiliations
Free article

Purification and characterization of a novel thermostable lipase from Pseudomonas cepacia

A Sugihara et al. J Biochem. 1992 Nov.
Free article

Abstract

A thermostable lipase from Pseudomonas cepacia has been purified to homogeneity as judged by SDS-PAGE and isoelectric focusing. The purification included treatment of the culture supernatant with acrinol, hydrophobic interaction chromatography, and gel filtration. The enzyme was a monomeric protein with M(r) of 36,500 and pI of 5.1. The optimal pH at 50 degrees C and optimal temperature at pH 6.5 were 5.5-6.5 and 55-60 degrees C, respectively, when olive oil was used as the substrate. Simple triglycerides of short and middle chain fatty acids (C < or = 12) were the preferred substrates over those of long chain fatty acids. The enzyme cleaved all the ester bonds of triolein, with some preference for the 1,3-ester bonds. The enzyme retained all its activity even after incubation at 75 degrees C (pH 6.5) for 30 min. Further, the activity was not impaired during 21 h storage at pH 6.5 in 40% water-miscible solvents including methanol, ethanol, acetone, acetonitrile, dimethylformamide, dimethylsulfoxide, and dioxane. The addition of dimethylsulfoxide or acetone to the assay mixture in the range of 0-35% stimulated the enzyme, whereas benzene or n-hexane had an inhibitory effect. These properties together with the N-terminal amino acid sequence confirmed that the enzyme differs from the known Pseudomonas sp. lipases.

PubMed Disclaimer

Similar articles

Cited by