Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May 23;66(10):941-64.
doi: 10.1080/15287390306454.

Pharmacokinetic modeling of disposition and time-course studies with [14C]atrazine

Affiliations

Pharmacokinetic modeling of disposition and time-course studies with [14C]atrazine

Tami S McMullin et al. J Toxicol Environ Health A. .

Abstract

A physiological pharmacokinetic (PPK) model, with blood, body, and brain compartments, was developed to estimate total plasma chlorotriazine (CI-TRI) time courses (i.e., atrazine [ATRA] and its three chlorinated metabolites) after oral dosing with ATRA. The model, based on disposition data for 14C-ATRA, tracked two pools of compounds: (1) ATRA and chlorinated metabolites (i.e., the CI-TRIs) and (2) glutathione conjugates. The PPK model developed from total radioactivity was valuable for assessing total plasma CI-TRI concentrations, estimating blood protein binding rates of CI-TRIs, and inferring relationships between tissue exposures of CI-TRIs and administered dose. Absorption of radioactivity into plasma was slow with a rate constant of 0.2 h-1. 14C-disposition data indicated that CI-TRIs react with red blood cells (presumably hemoglobin) and plasma proteins. Second-order rates of reaction of CI-TRIs with hemoglobin and plasma protein were estimated to be 0.008 L/mmol/h and 1.14 x 10(-7) L/mg/h, respectively. A time-course study, conducted as part of this study, evaluated the absorption, disposition, and elimination characteristics of individual CI-TRIs in plasma after a single oral dose of 90 mg ATRA/kg and indicated (1) that slow uptake into blood reflected both absorption and slow dissolution of the ATRA slurry and (2) that diaminochloro-s-triazine (DACT) was the major, persistent plasma CI-TRI after oral dosing. Optimally, PK model development for pesticide compounds like atrazine should include a combination of radiolabeled studies for residues and speciation studies of important metabolites.

PubMed Disclaimer

Publication types

LinkOut - more resources