Metabolism of hexahydro-1,3,5-trinitro-1,3,5-triazine through initial reduction to hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine followed by denitration in Clostridium bifermentans HAW-1
- PMID: 12827319
- DOI: 10.1007/s00253-003-1364-x
Metabolism of hexahydro-1,3,5-trinitro-1,3,5-triazine through initial reduction to hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine followed by denitration in Clostridium bifermentans HAW-1
Abstract
A fast hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-degrading [28.1 micromol h(-1) g (dry weight) cells(-1); biomass, 0.16 g (dry weight) cells(-1)] and strictly anaerobic bacterial strain, HAW-1, was isolated and identified as Clostridium bifermentans using a 16S-rRNA-based method. Based on initial rates, strain HAW-1 transformed RDX to hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) with yields of 56, 7.3 and 0.2%, respectively. Complete removal of RDX and its nitroso metabolites produced (%, of total C or N) methanol (MeOH, 23%), formaldehyde (HCHO, 7.4%), carbon dioxide (CO2, 3.0%) and nitrous oxide (N2O, 29.5%) as end products. Under the same conditions, strain HAW-1 transformed MNX separately at a rate of 16.9 micromol h(-1) g (dry weight) cells(-1) and produced DNX (25%) and TNX (0.4%) as transient products. Final MNX transformation products were (%, of total C or N) MeOH (21%), HCHO (2.9%), and N2O (17%). Likewise strain HAW-1 degraded TNX at a rate of 7.5 micromol h(-1) g (dry weight) cells(-1 )to MeOH and HCHO. Furthermore, removal of both RDX and MNX produced nitrite (NO2-) as a transient product, but the nitrite release rate from MNX was quicker than from RDX. Thus, the predominant pathway for RDX degradation is based on initial reduction to MNX followed by denitration and decomposition. The continued sequential reduction to DNX and TNX is only a minor route.
Similar articles
-
Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine and its mononitroso derivative hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine by Klebsiella pneumoniae strain SCZ-1 isolated from an anaerobic sludge.Appl Environ Microbiol. 2002 Nov;68(11):5336-41. doi: 10.1128/AEM.68.11.5336-5341.2002. Appl Environ Microbiol. 2002. PMID: 12406722 Free PMC article.
-
Biodegradation of RDX nitroso products MNX and TNX by cytochrome P450 XplA.Environ Sci Technol. 2012 Jul 3;46(13):7245-51. doi: 10.1021/es3011964. Epub 2012 Jun 25. Environ Sci Technol. 2012. PMID: 22694209
-
Age dependent acute oral toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and two anaerobic N-nitroso metabolites in deer mice (Peromyscus maniculatus).Chemosphere. 2007 May;67(11):2267-73. doi: 10.1016/j.chemosphere.2006.12.005. Epub 2007 Feb 2. Chemosphere. 2007. PMID: 17275885
-
Microbial degradation and toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine.J Microbiol Biotechnol. 2012 Oct;22(10):1311-23. doi: 10.4014/jmb.1203.04002. J Microbiol Biotechnol. 2012. PMID: 23075780 Review.
-
Comparison of water quality criterion and lifetime health advisory for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX).Regul Toxicol Pharmacol. 1990 Apr;11(2):118-22. doi: 10.1016/0273-2300(90)90015-4. Regul Toxicol Pharmacol. 1990. PMID: 2185507 Review.
Cited by
-
Ovine ruminal microbes are capable of biotransforming hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX).Microb Ecol. 2011 Aug;62(2):274-86. doi: 10.1007/s00248-011-9809-8. Epub 2011 Feb 22. Microb Ecol. 2011. PMID: 21340737
-
Relating Carbon and Nitrogen Isotope Effects to Reaction Mechanisms during Aerobic or Anaerobic Degradation of RDX (Hexahydro-1,3,5-Trinitro-1,3,5-Triazine) by Pure Bacterial Cultures.Appl Environ Microbiol. 2016 May 16;82(11):3297-3309. doi: 10.1128/AEM.00073-16. Print 2016 Jun 1. Appl Environ Microbiol. 2016. PMID: 27016566 Free PMC article.
-
A Sporolactobacillus-, Clostridium-, and Paenibacillus- Dominant Microbial Consortium Improved Anaerobic RDX Detoxification by Starch Addition.J Microbiol Biotechnol. 2020 Jun 28;30(6):839-847. doi: 10.4014/jmb.1910.10034. J Microbiol Biotechnol. 2020. PMID: 32160699 Free PMC article.
-
Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsia spp.Appl Environ Microbiol. 2005 Dec;71(12):8265-72. doi: 10.1128/AEM.71.12.8265-8272.2005. Appl Environ Microbiol. 2005. PMID: 16332812 Free PMC article.
-
Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine by novel fungi isolated from unexploded ordnance contaminated marine sediment.J Ind Microbiol Biotechnol. 2006 Oct;33(10):850-8. doi: 10.1007/s10295-006-0136-x. Epub 2006 May 16. J Ind Microbiol Biotechnol. 2006. PMID: 16703352
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous