Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Dec;263(6 Pt 2):H1901-6.
doi: 10.1152/ajpheart.1992.263.6.H1901.

Microvascular ischemia-reperfusion injury in striated muscle: significance of "reflow paradox"

Affiliations

Microvascular ischemia-reperfusion injury in striated muscle: significance of "reflow paradox"

M D Menger et al. Am J Physiol. 1992 Dec.

Abstract

Ischemia-reperfusion (I/R)-induced microvascular injury is characterized by capillary "no-reflow" and reflow-associated events, termed "reflow paradox," including leukocyte-endothelium interaction and increase in microvascular permeability. The major objectives of this study were 1) to elucidate the significance of reflow paradox after 4 h of tourniquet-induced ischemia in striated muscle and 2) to determine the role of reactive oxygen metabolites in the pathogenesis of reflow paradox-dependent microcirculatory alterations. By use of in vivo fluorescence microscopy in a striated muscle preparation of hamsters, leukocyte-endothelium interaction in postcapillary venules and macromolecular extravasation from capillaries and venules were quantified before ischemia and after 30 min, 2 h, and 24 h of reperfusion. I/R elicited marked enhancement (P < 0.01) of leukocyte rolling during initial reperfusion and a 20-fold increase of leukocyte adherence (P < 0.01) lasting for the entire postischemic reperfusion period (n = 7). These phenomena were accompanied by significant leakage (P < 0.01) of macromolecules from capillaries and in particular from postcapillary venules (n = 9). Both superoxide dismutase (SOD, 20 mg/kg body wt, n = 7) and allopurinol (50 mg/kg body wt, n = 7) were effective in attenuating I/R-induced leukocyte rolling and adherence. In addition, microvascular leakage was significantly reduced by allopurinol (n = 9) and completely abolished by SOD (n = 9) (P < 0.01). These results support the concept that reactive oxygen metabolites contribute to I/R-induced reflow paradox, resulting in leukocyte accumulation, adherence, and increase in microvascular permeability.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources