Escherichia coli mechanisms of copper homeostasis in a changing environment
- PMID: 12829268
- DOI: 10.1016/S0168-6445(03)00049-4
Escherichia coli mechanisms of copper homeostasis in a changing environment
Abstract
Escherichia coli is equipped with multiple systems to ensure safe copper handling under varying environmental conditions. The Cu(I)-translocating P-type ATPase CopA, the central component in copper homeostasis, is responsible for removing excess Cu(I) from the cytoplasm. The multi-copper oxidase CueO and the multi-component copper transport system CusCFBA appear to safeguard the periplasmic space from copper-induced toxicity. Some strains of E. coli can survive in copper-rich environments that would normally overwhelm the chromosomally encoded copper homeostatic systems. Such strains possess additional plasmid-encoded genes that confer copper resistance. The pco determinant encodes genes that detoxify copper in the periplasm, although the mechanism is still unknown. Genes involved in copper homeostasis are regulated by MerR-like activators responsive to cytoplasmic Cu(I) or two-component systems sensing periplasmic Cu(I). Pathways of copper uptake and intracellular copper handling are still not identified in E. coli.
Similar articles
-
The Pco proteins are involved in periplasmic copper handling in Escherichia coli.Biochem Biophys Res Commun. 2002 Jul 19;295(3):616-20. doi: 10.1016/s0006-291x(02)00726-x. Biochem Biophys Res Commun. 2002. PMID: 12099683
-
Mechanism of ATPase-mediated Cu+ export and delivery to periplasmic chaperones: the interaction of Escherichia coli CopA and CusF.J Biol Chem. 2014 Jul 25;289(30):20492-501. doi: 10.1074/jbc.M114.577668. Epub 2014 Jun 10. J Biol Chem. 2014. PMID: 24917681 Free PMC article.
-
A critical role of the periplasm in copper homeostasis in Gram-negative bacteria.Biosystems. 2023 Sep;231:104980. doi: 10.1016/j.biosystems.2023.104980. Epub 2023 Jul 14. Biosystems. 2023. PMID: 37453610
-
Metal export by CusCFBA, the periplasmic Cu(I)/Ag(I) transport system of Escherichia coli.Curr Top Membr. 2012;69:163-96. doi: 10.1016/B978-0-12-394390-3.00007-0. Curr Top Membr. 2012. PMID: 23046651 Review.
-
Copper uptake and resistance in bacteria.Mol Microbiol. 1993 Jan;7(1):1-5. doi: 10.1111/j.1365-2958.1993.tb01091.x. Mol Microbiol. 1993. PMID: 8437513 Review.
Cited by
-
Low-molecular-mass labile metal pools in Escherichia coli: advances using chromatography and mass spectrometry.J Biol Inorg Chem. 2021 Jun;26(4):479-494. doi: 10.1007/s00775-021-01864-w. Epub 2021 May 8. J Biol Inorg Chem. 2021. PMID: 33963934 Free PMC article.
-
The Methylococcus capsulatus (Bath) secreted protein, MopE*, binds both reduced and oxidized copper.PLoS One. 2012;7(8):e43146. doi: 10.1371/journal.pone.0043146. Epub 2012 Aug 20. PLoS One. 2012. PMID: 22916218 Free PMC article.
-
Copper as an antimicrobial agent against opportunistic pathogenic and multidrug resistant Enterobacter bacteria.J Microbiol. 2012 Aug;50(4):586-93. doi: 10.1007/s12275-012-2067-8. Epub 2012 Jul 21. J Microbiol. 2012. PMID: 22923106
-
Transcriptional and functional studies of Acidithiobacillus ferrooxidans genes related to survival in the presence of copper.Appl Environ Microbiol. 2009 Oct;75(19):6102-9. doi: 10.1128/AEM.00308-09. Epub 2009 Aug 7. Appl Environ Microbiol. 2009. PMID: 19666734 Free PMC article.
-
Gene expression induced by copper stress in the diatom Thalassiosira pseudonana.Eukaryot Cell. 2006 Jul;5(7):1157-68. doi: 10.1128/EC.00042-06. Eukaryot Cell. 2006. PMID: 16835459 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases