Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Aug 1;116(Pt 15):3221-6.
doi: 10.1242/jcs.00627.

Regulation of eosinophil membrane depolarization during NADPH oxidase activation

Affiliations

Regulation of eosinophil membrane depolarization during NADPH oxidase activation

Jennifer L Bankers-Fulbright et al. J Cell Sci. .

Abstract

Protein kinase C (PKC) activation in human eosinophils increases NADPH oxidase activity, which is associated with plasma membrane depolarization. In this study, membrane potential measurements of eosinophils stimulated with phorbol ester (phorbol 12-myristate 13-acetate; PMA) were made using a cell-permeable oxonol membrane potential indicator, diBAC4(3). Within 10 minutes after PMA stimulation, eosinophils depolarized from -32.9+/-5.7 mV to +17.3+/-1.8 mV. The time courses of depolarization and proton channel activation were virtually identical. Blocking the proton conductance with 250 microM ZnCl2 (+43.0+/-4.2 mV) or increasing the proton channel activation threshold by reducing the extracellular pH to 6.5 (+44.4+/-1.4 mV) increased depolarization compared with PMA alone. Additionally, the protein kinase C (PKC) delta-selective blocker, rottlerin, inhibited PMA-stimulated depolarization, indicating that PKCdelta was involved in regulating depolarization associated with eosinophil NADPH oxidase activity. Thus, the membrane depolarization that is associated with NADPH oxidase activation in eosinophils is sufficient to produce marked proton channel activation under physiological conditions.

PubMed Disclaimer

Publication types

LinkOut - more resources