Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Aug;36(8):1069-77.
doi: 10.1016/s0021-9290(03)00117-9.

Beneficial effects of moderate, early loading and adverse effects of delayed or excessive loading on bone healing

Affiliations
Comparative Study

Beneficial effects of moderate, early loading and adverse effects of delayed or excessive loading on bone healing

Alicia Bailón-Plaza et al. J Biomech. 2003 Aug.

Abstract

Fracture healing involves the differentiation and proliferation of cells in the callus and the synthesis and degradation of connective, cartilage and bone tissue. These processes are initiated and tightly regulated by growth factors and by the mechanical environment in the callus. In this work we incorporated the effects of mechanical stimulation on cell differentiation and ossification into a previously developed temporal-spatial model of growth factor mediated fracture healing. In particular, the stimulatory and inhibitory effects of dilatational and deviatoric strains were modeled. This predictive model was then calibrated and validated using well-defined in vivo experiments from the literature. As in the experiments, the results of the model demonstrated the beneficial and adverse effects of moderate and excessive loading, respectively, as well as the negative effects of delaying mechanical stimulation of rigidly fixed calluses. In addition, the model examined loading conditions and time points beyond those used in the experiments, providing a more complete and mechanistic characterization of the effects of loading in the biological tissue response associated with fracture healing.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources