Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jun;38(6):587-95.
doi: 10.1016/s0223-5234(03)00088-6.

The enhancement of neutron irradiation of HeLa-S cervix carcinoma cells by cell-nucleus-addressed deca-p-boronophenylalanine

Affiliations

The enhancement of neutron irradiation of HeLa-S cervix carcinoma cells by cell-nucleus-addressed deca-p-boronophenylalanine

Klaus Braun et al. Eur J Med Chem. 2003 Jun.

Abstract

Boron neutron capture therapy (BNCT) is an experimental treatment modality which depends on a sufficient cellular uptake of Boron ((10)B) followed by an exposure to a thermal neutron beam from a nuclear reactor. High energetic particles (4He and 7Li) are created during the neutron capture reaction and produce DNA damages, which lead to cell killing. Regarding BNCT, the short radiation range of He- and Li-particles is decisive for the distribution of (10)B. Until now, BNCT has been lacking for therapeutically effective concentrations of (10)B. Twenty-four hours after the combined use of our 'Bioshuttle'-p-borono-phenylalanine(10)-constructs ('Bioshuttle'-p-BPA(10)) and neutron-irradiation, an obvious reduction of the radiation-resistant HeLa-S cells could be observed. No cells were alive 72 h after the incubation with 'Bioshuttle'-p-BPA(10) followed by neutron irradiation. A post-mitotic cell death could be assumed based on flow cytometrical data.

PubMed Disclaimer

MeSH terms