Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul;17(10):1319-21.
doi: 10.1096/fj.03-0950fje.

Bacterial DNA evokes epithelial IL-8 production by a MAPK-dependent, NF-kappaB-independent pathway

Affiliations

Bacterial DNA evokes epithelial IL-8 production by a MAPK-dependent, NF-kappaB-independent pathway

Mahmood Akhtar et al. FASEB J. 2003 Jul.

Abstract

Recognition of bacterial products by the innate immune system is dependent on pattern-recognition receptors: toll-like receptor 9 (TLR-9) in the case of bacterial DNA. We hypothesized that bacterial DNA can directly affect enteric epithelial cells. RT-PCR revealed constitutive TLR-9 mRNA expression in three human colonic epithelial cell lines (T84, HT-29, Caco-2) and THP-1 monocytes. Epithelial cells, in six-well culture plates or on filter supports, were exposed to E. coli DNA (1-50 microg/ml), synthetic CpG-rich oligonucleotides, or calf thymus DNA for 6-48 h. Exposure to E. coli DNA resulted in an increase in IL-8 mRNA, and a time- and dose-dependent increase in IL-8 secretion. Also, CpG oligonucleotides induced epithelial IL-8 production, whereas calf thymus DNA did not. Exposure to E. coli DNA resulted in phosphorylation of ERK 1/2 MAPK and inhibitors of ERK activity (PD98059, UO126) significantly reduced the evoked IL-8 production. In contrast, inhibitors of NFkappaB activity (PDTC, SN50) did not block E. coli DNA-induced IL-8 production. Electrophoretic mobility shift assays revealed that E. coli DNA stimulated epithelial AP-1 but not NFkappaB activation. The barrier (i.e., transepithelial resistance) and ion transport parameters of epithelial monolayers (assessed in Ussing chambers) were unaltered following E. coli DNA exposure. Thus model gut epithelia express TLR-9 mRNA and, while maintaining their barrier function, can respond to E. coli DNA by increased IL-8 production.

PubMed Disclaimer

MeSH terms

LinkOut - more resources