Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1992 Nov:172:271-87.
doi: 10.1242/jeb.172.1.271.

Complex modulation of cation channels in the tonoplast and plasma membrane of Saccharomyces cerevisiae: single-channel studies

Affiliations
Review

Complex modulation of cation channels in the tonoplast and plasma membrane of Saccharomyces cerevisiae: single-channel studies

A Bertl et al. J Exp Biol. 1992 Nov.

Abstract

Detailed patch-clamp studies have been made of ion channels in the plasma membrane and tonoplast of the yeast Saccharomyces cerevisiae. The predominant tonoplast channel is a high-conductance cation-selective inward rectifier (passing ions easily into the cytoplasm from the vacuole), with its open probability (Po) peaking at about -80 mV (cytoplasm negative) and falling to near zero at +80 mV. It has a maximal slope conductance of approximately 150 pS in 100 mmol l-1 KCl, and conducts Na+, K+ and Ca2+. Elevated cytoplasmic Ca2+ concentration, alkaline pH and reducing agents can activate the channel, its likely physiological function being to adjust cytoplasmic Ca2+ concentration from the vacuolar reservoir. The predominant plasma-membrane channel is a strongly outward rectifying K+ channel (passing K+ easily out of the cytoplasm to the extracellular medium), which is activated by positive-going membrane voltages as well as by elevated cytoplasmic Ca2+ concentration and alkaline pH. Interaction between membrane voltage and [Ca2+]cyt is complex and defines three parallel closed states for the channel: a Ca(2+)-independent brief closure (I), a calcium-inhibited long closure (G) and, at large positive voltages, a calcium-induced brief blockade (B). This channel is likely to function in steady-state turgor regulation and in charge balancing during proton-coupled substrate uptake.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources