Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul;35(1):57-70.
doi: 10.1046/j.1365-313x.2003.01779.x.

Mutations in the huge Arabidopsis gene BIG affect a range of hormone and light responses

Affiliations
Free article

Mutations in the huge Arabidopsis gene BIG affect a range of hormone and light responses

Konstantin Kanyuka et al. Plant J. 2003 Jul.
Free article

Abstract

In independent genetic screens, for shade-avoidance response and cytokinin sensitivity, we identified two Arabidopsis mutants, attenuated shade avoidance 1 (asa1) and umbrella1 (umb1), which have very similar pleiotropic phenotypes. asa1 and umb1 are allelic to tir3-1, and are caused by mutations in BIG, which is required for normal auxin efflux. They have a compact rosette, fewer lateral roots, delayed flowering, more secondary inflorescence, smaller seeds and, in the Laer-0 background, much shorter internodes between adjacent flowers, suggesting an interaction between BIG and ERECTA. These mutants have organ-specific defects in response to cytokinins, ethylene, N-1-naphthylphthalamic acid (NPA) and gibberellin (GA). The phenotype of the asa1 ga1-3 double mutant is consistent with defects in GA signalling. There are subtle effects in responses to auxins, abscisic acid and brassinolide. Elongation growth associated with shade avoidance in phyA phyB null mutants is suppressed by asa1 in all organs other than the hypocotyl. Therefore, we here provide evidence that BIG is a key player not just in auxin signalling, but in a multitude of light and hormone pathways.

PubMed Disclaimer

Publication types

MeSH terms