Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Oct;24(22):4023-9.
doi: 10.1016/s0142-9612(03)00295-3.

Designing alginate hydrogels to maintain viability of immobilized cells

Affiliations

Designing alginate hydrogels to maintain viability of immobilized cells

Hyun Joon Kong et al. Biomaterials. 2003 Oct.

Abstract

Hydrogel-forming materials have been widely utilized as an immobilization matrix and transport vehicle for cells. Success in these applications is dependent upon maintaining cell viability through the gel preparation process. We hypothesized that the high viscosity of pre-gelled solutions typically used in these applications may decrease cell viability due to the high shear forces required to mix cells with these solutions. Further, we proposed this harmful effect could be mediated by decreasing the molecular weight (Mw) of the polymer used to form the gel, while maintaining its gel-forming ability. To investigate this hypothesis, alginate was used as model system, as this copolymer consists of cross-linkable guluronic acid (G) blocks and non-cross-linkable blocks. Decreasing the Mw of alginate using irradiation (e.g., irradiating at dose of 2 Mrad) decreased the low shear viscosity of 2% (w/w) pre-gelled solutions from 1000 to 4 cP, while maintaining high elastic moduli, once cross-linked to form a gel. Importantly, the immobilization of cells with these polymer hydrogels increased cell viability from 40% to 70%, as compared to using high Mw polymer chains to form the gels. Furthermore, the solids concentration of gels formed with the low Mw alginate could be raised to further increase the moduli of gels without significantly deteriorating the viability of immobilized cells. This was likely due to the limited increase in the viscosity of these solutions. This material design approach may be useful with a variety of synthetic or naturally occurring block copolymers used to immobilize cells.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources