Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jun;145(6):489-93; discussion 493.
doi: 10.1007/s00701-003-0036-z.

The antioxidant EPC-K1 ameliorates brain injury by inhibiting lipid peroxidation in a rat model of transient focal cerebral ischaemia

Affiliations

The antioxidant EPC-K1 ameliorates brain injury by inhibiting lipid peroxidation in a rat model of transient focal cerebral ischaemia

N Kato et al. Acta Neurochir (Wien). 2003 Jun.

Abstract

Background: Cerebral ischaemia-reperfusion injury is associated with the generation of reactive oxygen species during the early phases of reoxygenation. EPC-K1, a phosphate diester of vitamins C and E, has been reported to possess potent hydroxyl radical scavenging activity. This study was performed to investigate the effectiveness of EPC-K1 in attenuating cerebral ischaemia-reperfusion injury in a rat model of transient focal cerebral ischaemia.

Method: We evaluated the efficacy of EPC-K1 by measuring the concentration of cerebral thiobarbituric acid reactive substances (TBARS), an indicator of the extent of lipid peroxidation by free radicals, and infarct size in rats subjected to one hour of cerebral ischaemia and 4, 24, or 72 hours of reperfusion.

Findings: EPC-K1 significantly reduced both the cerebral TBARS level and the infarct size in a rat model of transient focal cerebral ischaemia. These results indicate that EPC-K1 administration during the early stages of reperfusion ameliorates ischaemic brain injury by inhibiting lipid peroxidation.

Interpretation: This report is the first to describe the protective mechanism of EPC-K1 by measuring both the TBARS level and infarct size in a rat model of transient focal cerebral ischaemia, and may suggest a potential clinical approach for the treatment of ischaemic cerebrovascular disease.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources